
EC316a: Advanced Scientific Computation,

Fall 2003

Notes Section 2

Discrete time, discrete state dynamic mod-

els

Dynamic economic models often present three

complications typically absent from dynamic

models in the physical sciences. Humans are

forward–looking beings, able to evaluate how

their actions will affect them in the future as

well as the present, so that the most useful

dynamic models are forward–looking. Second,

human behavior is innately unpredictable, re-

quiring a stochastic model. Third, the pre-

dictable component of human behavior is of-

ten complex, requiring an inherently nonlinear

model. Thus anything beyond a trivially simple



model will lack an explicit analytical solution,

and numerical methods must be employed. In

this section of the module, we consider a sim-

ple class of models in discrete time—that is,

the decisions made, and resulting outcomes,

appear at discrete intervals of time–that arise

from a discrete–state model, in which a fi-

nite number of states of the world may occur

at each discrete time. The simplest of these

frameworks, which we study here, is the DTDS

Markov decision model, where the state of the

economic system is a controlled Markov pro-

cess.

A Markov process is a sequence of random vari-

ables, {Xt | t = 0,1,2, . . .} defined on a state

space S whose distributions depend only on the

immediately prior value of the sequence: that

is, Xt+1 depends only upon Xt. Such a pro-

cess is said to be memoryless since the distri-

bution conditioned on the entire history of the



process is completely determined by the most
recent element of that history. A Markov chain
is a Markov process with a finite state space
S = {1,2,3, . . . , n} which is completely char-
acterized by its transition probabilities Ptij =
Pr{Xt+1) = j|Xt = i}, i, j ∈ S. It is said to
be stationary if the transition probabilities are
not dependent on time, with transition proba-
bility matrix P . A stationary Markov chain will
have a steady–state distribution π which, if it
exists, will completely characterize the long–
run behavior of the chain. Existence depends
on the Markov chain being irreducible: starting
from every state, there is a positive probability
of eventually visiting every other state. Given
transition probability matrix P , if there exists
an n-vector π such that

P ′π = π,
∑
i

πi = 1

then the steady–state distribution exists, and
can be computed from a system of linear equa-
tions. This distribution indicates what per-
centage of the time the system will spend in



each of the states. A very simple example of a

Markov process: the macroeconomy may have

two states, (1) expansion and (2) recession.

Consider that an expansion has a 70% proba-

bility of being sustained next quarter, while a

recession has a 40% probability of being sus-

tained. Then the Markov transition probability

matrix is (
0.7 0.3
0.6 0.4

)
where each row sums to one (an expansion has

an 30% probability of ending in a particular

period; a recession has a 60% probability of

ending). The steady–state distribution exists,

and may be calculated from the linear equation

system (
I − P ′

1

)
π =

(
0
1

)
in which one row of P ′ may be dropped, due

to linear dependencies, to arrive at a unique



solution. In the example above, the steady-

state distribution has π1 = 2/3 and π2 = 1/3:

that is, the economy spends 2/3 of the time

in expansion in the long run.

The DTDS Markov model has the following

structure: in every period t, an economic agent

observes the state of the system st, takes an

action xt, and earns a reward f(st, xt) which

depends both on the state of the system and

the action taken: that is, the reward is said to

be state–contingent. The state space S and

action space X are both finite, and the state

is a controlled Markov process, depending only

on the prior state and the agent’s action at

this point in time. The solution to this model

is a sequence of policies {x∗t} that prescribe the

action xt = x∗t (st) that should be taken in any

given state and period so as to maximize the

present value of current and expected future

rewards over a time horizon T , discounted at

a per–period factor δ.



A discrete Markov model may be defined over

an infinite horizon (T = ∞) or a finite horizon,

and may be either deterministic or stochas-

tic. In the prior case, next period’s state is

known with certainty once the current state

and action are known, and we may define the

deterministic state transition function st+1 =

g(st, xt).

Discrete Markov decision models may be an-

alyzed using dynamic programming, and Bell-

man’s principle of optimality: the notion that

an optimal policy for this period is formed given

that all future decisions are optimal, as ex-

pressed in the Bellman equation defining the

value function for each point in time. The

agent must optimally trade off an immediate

reward f(st, xt) against expected future rewards

δEtVt+1(st+1), where V () is the value function.

In a finite–horizon problem, the optimizing agent

faces decisions in periods 1 through T , and



may earn a final reward VT+1(sT+1) depend-

ing on the realization of the state in that pe-

riod (for instance, an investment project may

have a scrap or salvage value at the end of

its useful life, with a value dependent on the

current market for used capital goods). Given

the terminal value function VT+1, the problem

may be solved recursively from the last period

back to the first period. In an infinite–horizon

problem, the value functions will not depend

on time, but may be derived by a contraction

mapping as long as the discount factor δ is less

than one.

Let us now consider some concrete examples

of this type of model, and how solutions to

these models might be computed. As a first

example, we consider management of a mine.

The mine will be shut down and abandoned

after T years of operation. The price of ex-

tracted ore is $p per ton, and the total cost



of extracting x tons of ore in a year, given
that the mine contains s tons at the begin-
ning of the year, is $c(s, x), reflecting the fact
that extracting the deeper ore may be more
costly. The mine currently contains s̄ tons of
ore. If we restrict output to an integer number
of tons, what extraction schedule maximizes
profits of operating the mine over this finite
horizon?

The state variable s, s ∈ {0,1,2, . . . , s̄} is the
amount of ore remaining at the beginning of
each year. The action variable x, x ∈ {0,1,2, . . . , s}
is the amount extracted over the year. The
state transition function keeps track of the
ore: g(s, x) = s − x, while the reward func-
tion is f(s, x) = p x− c(s, x). The value of the
mine, given that it contains s tons of ore at
the beginning of year t, satisfies the Bellman
equation

Vt(s) = max
s∈{0,1,2,...,s}

{p x− c(s, x)+ δVt+1(s−x)}



subject to the terminal condition VT+1(s) = 0.

How might we set up a computational solution

for such a problem? Assume that the states

S = {1,2, . . . , n} and actions X = 1,2, . . . , m

are given by the first n and m integers. vi ∈ <
will denote an arbitrary value vector, for the

value in state i, while xi ∈ X will denote the ac-

tion in state i. For each policy x, let f(x) ∈ <n

denote the n-vector of rewards earned in each

state when one follows the prescribed policy:

fi(x) is the reward in state i, given action

xi taken. For problems with constrained ac-

tions (e.g. mining more ore than exists in the

mine) we set fi(x) = −∞ to indicate that a

certain action is not admissible. Finally, let

P (x) ∈ <n x n denote the n x n state tran-

sition probabilities when one follows the pre-

scribed policy: that is, Pij(x) is the probability

of a jump from state i to j, given that action

xi is taken. Given this notation, the Bellman



equation for a finite–horizon problem may be

expressed as a recursive vector equation. If

vt ∈ <n denotes the value function in period t,

then

vt = max
x

[ f(x) + δP (x)vt+1 ]

where max is the vector operation of taking

the maximum element of each row individually.

The Bellman equation for an infinite–horizon

problem may be written similarly as a vector

fixed–point equation.

Dynamic programming problems are subject

to the “curse of dimensionality”: any solu-

tion algorithm may be expressed as a set of

three nested loops, where for each time, we

must consider each possible state, and within

each state, each possible action. The com-

putational effort is roughly proportional to the

product of the number of times each loop must

be executed: for n states and m actions, then



n m total actions must be evaluated for each

outer iteration (time period). The dimension-

ality of the state and action variables is par-

ticularly important. In the mine management

example, there is only one state variable, but in

many DTDS dynamic models, there are mul-

tiple state variables. The computational effort

grows exponentially with the dimensionality of

the state space, since for a k–dimensional state

variable with l levels, the number of states is

n = lk. The same will be true for the dimen-

sionality of the action space (e.g., if the eco-

nomic agent must choose two or more poli-

cies each period). This “curse” is the binding

constraint on computational solution of these

problems.

Let us consider a numerical solution for the

mine management example (demddp01). Let

market price p=1, initial stock of ore s̄=100,

the cost of extraction c(s, x) = x2/(1 + s) and



the annual discount factor δ=0.9. We define

state and action spaces S and X as integer vec-

tors (0 : s̄)′, and scalars n and m as the length

of those spaces, respectively. The reward ma-

trix is then defined as the profit to be realized

for each period’s activity, in current dollars,

with the reward set to −∞ for extraction be-

yond the feasible scale. This is a deterministic

model, so that the state transition rule is just

the accounting identity defining the g matrix as

the amount of ore remaining, given the previ-

ous state and current action. The CompEcon

routine ddpsolve generates a solution, return-

ing the n–vector of values v, the n–vector of

optimal actions x, and the n x n controlled

state transition probability matrix P ∗. The

ddpsimul routine may be used to forecast the

optimal path of the state variable over a finite

horizon.

A second example: a manufacturer who must

decide whether an existing capital good should



be replaced or kept in service. Assume that
these goods have a maximum life of n years,
after which they must be replaced by law. An
a–year–old good yields a profit contribution of
p(a), and a new capital good costs c. What is
the profit–maximizing asset replacement pol-
icy?

The state variable a ∈ {1,2,3, . . . , n} is the age
of the asset in years. The action variable x for
each year takes on a value keep or replace. The
state transition function is thus

g(a, x) =

{
a + 1, x = keep
1, x = replace

with reward function

f(a, x) =

{
p(a), x = keep
p(0)− c, x = replace

The value of an asset of age a satisfies the
Bellman equation

V (a) = max{p(a)+δV (a+1), p(0)−c+δV (1)}



where we set p(n) = −∞ to enforce retirement

of an n–year–old asset. If the decision is keep,

the manufacturer earns p(a) over the coming

year and begins the next year with an asset one

year older and worth V (a + 1). If she replaces

the asset, she earns p(0)− c over the year, and

begins the next year with a one–year–old asset

worth V (1).

To set up a numerical solution to this problem

(demddp02), we must define the profit function

(e.g., p(a) = 50 − 2.5a − 2.5a2), which is con-

cave in a: that is, an older asset is costlier

to operate. If we assume that the maximum

asset life is 5 years, a new asset costs $75,

and a discount factor of δ = 0.9, we may solve

the problem to find that the asset is replaced

every four years, when its profit contribution

becomes zero.



A variation on this model may be developed
which allows for the possibility of annual main-
tenance which increases the asset’s productiv-
ity. Then the action variable takes on one of
three values: no action, service or replace. If
no action is chosen, then the asset is retained,
but not serviced. There are now two state
variables: a, as before, the age of the asset in
years, and s, the number of servicings it has
received (each of which costs $k). The state
transition and reward functions are then

g(a, s, x) =


(a + 1, s) x = no action
(1,0) x = replace
(a + 1, s + 1) x = service

and

f(a, s, x) =


p(a, s), x = no action
p(0,0)− c, x = replace
p(a, s + 1)− k, x = service

The Bellman equation for this two–state–variable
problem now expresses the asset’s value as

V (a, s) = max{p(a, s) + δV (a + 1, s),



p(a, s + 1)− k + δV (a + 1, s + 1),

p(0,0)− c + δV (1,0)}

where p(n, s) = −∞ to enforce replacement of

a n–year–old asset. The impact of servicings

on the productivity of an asset with a five–year

lifetime is given by the function

p(a, s) = (1−
(a− s)

5
)(50− 2.5a− 2.5a2)

so that if unserviced, the profit contribution of

an asset is reduced by 20% per year of age.

Servicing can undo this reduction entirely (so

that the first term is always unity) or stay its

course. It is likely, then (depending on the cost

of servicing) that the optimal path will involve

periodic maintenance of the asset.

The Bellman equation indicates that if an asset

of age a with s servicings is replaced, the firm

earns p(0,0)− c over the coming year and then

has an asset worth V (1,0). If the existing asset



is serviced, the firm earns p(a, s + 1) − k over

the coming year and then has an asset worth

V (a + 1, s + 1). If no action is taken, earnings

are p(a, s), and the asset at year’s end is worth

V (a+1, s). The δ in each term translates that

end–of–year value into present terms.

A numerical solution to this problem (demddp03)

is more complicated than that without mainte-

nance, since there are now two state variables.

A grid of values must be defined over a and

s that considers all possible combinations of

age and number of servicings. Likewise, the

reward matrix now must consider the rewards

for three possible outcomes at each point in

time, so that the dimension of the problem is

greater. In a numerical solution to this prob-

lem, with a reward function defined to make

a serviced asset more productive, the asset is

serviced during its four–year expected useful

life, at the beginning of the second and third

years of operation.



As a last example of the DTDS model, con-
sider binomial asset pricing. An American put
option gives the right (but not the obligation)
to sell a specified quantity of a commodity
at a specified price on or before a specified
expiration date. In a binomial asset–pricing
model, the underlying commodity price is as-
sumed to follow a two–state jump process. If
the price is p at time t, then the price at time
t + ∆t will be pu with probability q and p/u

with probability (1− q), where u = exp(σ
√

∆t),
q = 1/2 +

√
∆t
2σ (r − 1/2σ2) and δ = exp(−r∆t).

In this framework, r is the annualized contin-
uously compounded interest rate, σ is the an-
nualized volatility of the commodity price, and
∆ is the time step, in years. If the price of the
commodity is p0 at time 0, what is the value
of an American put option with strike price K

expiring T years hence?

This is a finite horizon stochastic model (the
first stochastic model we have considered) with



time measured in ∆t = T/N years. The state

p ∈ {p0ui|i = −N,−N + 1, . . . , N − 1, N} is the

commodity price that could occur in each fu-

ture period, while the action variable x for each

point in time is either hold or exercise. Once

the option is exercised, it is dead. The state

transition probabilities are

Pr(p′|p, x) =


q, p′ = pu
1− q, p′ = p/u
0, otherwise

with reward function

f(p, x) =

{
0, x = hold
K − p, x = exercise

That is, the option either expires worthless

(if the price of the good is higher than K)

or is worth its “moneyness” at that point in

time: if the good’s price is p, one can buy it at

that price, exercise the option, and earn K − p

(the amount the option is said to be “in the

money”) as a riskless profit. If K − p is never



positive, the option is worthless at that point

in time (and perhaps over its entire lifetime).

Buying a put option is a “bearish” bet that

the price will decline during the life of the op-

tion; the maximum value of the option is thus

K if the price of the good falls to (near) zero.

Given that the current price is p, the value of

the option at the beginning of period i satisfies

the Bellman equation

Vi(p) = max{K−p, qδVt+1(pu)+(1−q)δVt+1(p/u)}

subject to the terminal condition VN+1(p) = 0,

that is, that the option is worthless if not exer-

cised by period N . At each decision point, the

owner must decide whether the option should

be exercised (earning K − p, given that this

amount is positive) or held for another period.

The latter choice has the stochastic value given

by the second term above: the discounted ex-

pected value of the option over the two pos-

sible (up/down) states for the price process.



Thus the decision at each point in time is a

judgment of whether the option is worth more

“dead or alive.” At the time of expiration,

the option is worth the amount by which it is

“in the money”; prior to that time, it is worth

more than that (e.g., an “out of the money”

option will still have positive value, and trade

at a positive price, or option premium) given

the likelihood that it will be worth more at a

later point. As the time to expiration declines,

the “time value” of the option is reduced; thus

we consider an option (either put or call) to

be a “wasting asset”, since its time value is a

monotone declining function of its remaining

lifetime.

A numerical implementation of the binomial

option pricing problem is given by demddp04.


