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Discrete time, continuous state dynamic

models

We consider now discrete–time models in which

decisions are made over continuous state vari-

ables. We may define three classes of such

models. First, there are models of central-

ized decision–making in which either discrete

or continuous actions may be taken. The for-

mer category includes, e.g., decisions to exer-

cise an option (a binary choice) given the con-

tinuous underlying price process, or to enter

(exit) an industry. The latter category would

include models in which the action taken could

take on any real value, not restricted to integer

values.



As a second class, we might consider strate-

gic games among a small group of individuals,

firms or countries in which actions are taken

in response to the movements of continuous

state variables and other agents’ choices. For

instance, we could consider the actions of the

members of the OPEC cartel, deciding how

much crude oil to produce, in response to the

continuous movements of the spot price of

crude.

As a third class, we could consider partial and

general equilibrium models of collective, de-

centralized economic behavior. These models

characteristically consider the importance of

agents’ expectations about the future course

of the state variables, i.e. what will happen

at a future date. If it is assumed that agents’

expectations are consistent with the implica-

tions of the model, the model is termed a ra-

tional expectations model. Rational expecta-

tions models have been widely used to study



asset returns, futures prices in a commodity

market, producer responses to price support

programs and workers’ responses to alterations

in tax and transfer policies.

Dynamic optimization and equilibrium models

are closely related. The latter possess intertem-

poral arbitrage conditions: that is, possibili-

ties to unambiguously improve one’s welfare,

or wealth, or income by taking a certain ac-

tion are systematically destroyed by the collec-

tive action of optiimizing agents. The solu-

tion to continuous state / continuous action

dynamic optimization models may be charac-

terized by first–order intertemporal equilibrium

conditions obtained by differentiating the Bell-

man equation: for instance, a first–order con-

dition (or Euler equation) that states that an

individual should find the optimal tradeoff be-

tween consumption today and consumption to-

morrow. These models generally pose infinite–

dimensional fixed–point problems that lack a



closed–form solution, so that numerical solu-

tions are required.

Continuous state dynamic programming

The discrete time, continuous state (DTCS)

Markov decision model has the following struc-

ture: in each period t, an agent observes the

state of the economic system st, takes an ac-

tion xt, and earns a reward f(st, xt) contin-

gent upon both the state of the system and

the action taken. The state is a controlled

Markov process, in which the state at time

t + 1 depends on the state and action in pe-

riod t and an exogenous random shock εt+1,

unforecastable in period t:

st+1 = g(st, xt, εt+1)

The agent seeks a sequence of policies {x∗t}, or

rules, that prescribe the action xt = x∗t (st) that

should be taken in any future state and period



so as to maximize the present value of current

and expected future rewards over a time hori-

zon T , discounted with the per–period factor δ.

The horizon may be either infinite or finite, and

the model may be deterministic or stochas-

tic. In a stochastic model, the shocks are as-

sumed to be i.i.d.—independently and identi-

cally distributed over time—and independent

of prior states and actions. The state space

may contain both continuous and integer vari-

ables, or it may be comprised wholly of con-

tinuous variables. The action space may, con-

ceptually, include either continuous variables or

discrete variables. We will consider only mod-

els in which all action variables are one sort or

the other.

Models of this sort can be handled with dy-

namic programming methods based on the Bell-

man principle. In a finite–horizon problem, we

denote as Vt(s) the maximum attainable sum



of current and expected future rewards given

that the system is in state s at time t. The

principle of optimality implies that the value

functions must satisfy

Vt(s) = max
x∈X(s)

{f(s, x) + δEVt+1(g(s, x, ε))},

s ∈ S, t = 1,2, . . . , T

If the decision problem has an infinite horizon,

the value function will not depend on time t, so

we may write the Bellman equation as a func-

tional fixed–point equation in the value func-

tion:

V (s) = max
x∈X(s)

{f(s, x)+δEV (g(s, x, ε))}, s ∈ S

If the discount factor δ is less than unity and

the reward function f is bounded, the mapping

implied by the Bellman equation is a strong

contraction on the space of bounded continu-

ous functions and will possess a unique solu-

tion.



Euler equations

If a model of this sort has purely continuous

state and action spaces, its solution may be

characterized by first–order equilibrium condi-

tions: the so–called Euler conditions, defin-

ing intertemporal arbitrage opportunities. Let

us consider these conditions for an infinite–

horizon model with twice continuously differ-

entiable reward (f) and state transition (g)

functions, and a discount factor δ less than

unity. The equilibrium conditions involve not

the value function, but rather its derivative

λ(s) = V ′(s)

which is termed the shadow price function, rep-

resenting the marginal value of the state vari-

able to the optimizer: that is, the price that

the optimizer is willing to pay to relax the con-

straint.



For a discrete time, continuous state, contin-

uous action Markov decision problem, we ap-

ply the Kuhn–Tucker and Envelope theorems

to the optimization problem. Assuming ac-

tions are unconstrained, the Kuhn–Tucker con-

ditions imply that the optimal action x, given

state s, satisfies the “equimarginality” condi-

tion

fx(s, x) + δE[λ(g(s, x, ε))gx(s, x, ε)] = 0

while the Envelope Theorem applied to this

problem implies

fs(s, x) + δE[λ(g(s, x, ε))gs(s, x, ε)] = λ(s)

Here fx (and similar expressions) represents the

partial derivative of f with respect to that ar-

gument. Note that in the Kuhn–Tucker condi-

tion, the derivatives are taken with respect to

the action variable x, denoting that one can-

not improve by altering x. In the Envelope

Theorem, the derivatives are taken with re-

spect to the continuous state variable s, and



the right hand side reflects the shadow price

of that value of the state. In certain appli-

cations, the state transition depends only on

the action taken by the agent, and not upon

the prior state, so that gs = 0, and one may

substitute the second condition into the first,

which defines the Euler equation as a single

functional equation in a single unknown, the

optimal policy x.

An Euler equation problem may also be con-

strained, by defining bounds on the policy vari-

able; for instance

a(s) ≤ x ≤ b(s)

where a and b are differentiable functions of

the state s. In these instances, the Euler con-

ditions reflect the degree to which the con-

straint binds. For instance, the Kuhn–Tucker

conditions are modified to

fx(s, x) + δE[λ(g(s, x, ε))gx(s, x, ε)] = µ



where x and µ satisfy the complementarity con-

ditions

xi > ai(s) → µi ≥ 0

xi < bi(s) → µi ≤ 0

where µ is a vector, the ith element of which

(µi) measures the current and expected future

reward from a marginal increase in the ith ac-

tion variable xi. At the optimum, µi must be

nonpositive if xi is less than its upper bound, or

rewards could be increased by raising xi. Sim-

ilarly, µi must be nonnegative if xi exceeds its

lower bound, or rewards could be increased by

costlessly decreasing xi. Thus, models may

contain constraints upon actions—such as a

limit on the amount of borrowing against fu-

ture income that a consumer might make–which

would prevent them from reaching their uncon-

strained optimum.

For a deterministic model, we may seek to ex-

amine the steady–state properties of a model,



which if it exists is the solution to a nonlinear

equation. For an unconstrained deterministic

problem, the steady state consists of a state s∗,
an action x∗ and a shadow price λ∗ that satisfy

the Euler and state stationarity conditions

fx(s
∗, x∗) + δλ∗gx(s

∗, x∗) = 0

λ∗ = fs(s
∗, x∗) + δλ∗gs(s

∗, x∗)

s∗ = g(S∗, x∗)

The steady–state conditions (for this problem

or its constrained counterpart) pose a finite–

dimensional problem which can usually be solved

by standard numerical methods. In simpler ap-

plications, the steady–state conditions can of-

ten be solved analytically, even when the Bell-

man and Euler equations do not possess closed–

form solutions. Many stochastic economic mod-

els are solved by a method of linearization around

a trial solution (as we will discuss later when

considering DYNARE).

Continuous State Discrete Choice models



We return to the asset replacement example

considered in discrete state modeling, consid-

ering that now to be a continuous–state pro-

cess with stochastic components. At the be-

ginning of each year, the manufacturer must

decide whether to continue to use an asset or

replace it. An a–year–old asset produces q(a)

units of output up to ā years, when it becomes

unsafe and must be replaced at a cost of c.

The profit contribution of one unit of output is

an exogenous continuous–valued Markov pro-

cess

pt+1 = h(pt, εt+1)

We seek the profit–maximizing replacement pol-

icy. This is an infinite–horizon stochastic model

with time t measured in years. Although the

asset has maximum life ā years, the firm is

infinitely–lived, and maximizes profit over the

infinite horizon. There are two state variables,

p ∈ (0,∞) and a ∈ {1,2,3, . . . , ā}. The action



variable x ∈ {keep, replace} is discrete, so that

the state transition function is

g(p, a, x, ε) =

{
(h(p, ε), a + 1), x = keep
(h(p, ε),1), x = replace

With the reward function

f(p, a, x) =

{
(pq(a), x = keep
(pq(0)− c, x = replace

The value of an asset of age a satisfies the

Bellman equation

V (p, a) = max{pq(a) + δEV (h(p, ε), a + 1), pq(0)− c

+δEV (h(p, ε),1)}

Even though the profit contribution in future

years is unknown, the optimization problem

may still be solved by taking expectations, since

the ε process has expected value zero. A nu-

merical implementation of this model is con-

tained in demdp01.

We may also consider the option pricing model

developed in discrete state modeling. We now



relax the assumption of a binomial pricing pro-

cess and allow the price to follow a continuous

stochastic Markov process

pt+1 = h(pt, εt+1)

The American put option gives the purchaser

the right (but not the obligation) to sell a spec-

ified quantity of a commodity at strike price K

on or before the expiration date T . This is a

finite horizon stochastic model with state vari-

ables p ∈ (0,∞) and d ∈ {0,1}, where d is a

discrete variable expressing the exercise status

of the option: 1 if it has been exercised, 0

otherwsise. The state transition function is

g(p, d, x, ε) = (h(p, ε), x)

and the reward function is

f(p, d, x) =

{
K − p, d = 0, x = 1
0, otherwise

The value of an unexercised option in period t,

given that the commodity price is p, satisfies



the Bellman equation

Vt(p,0) = max{K − p, δEVt+1(h(p, ε),0}

subject to the terminal condition VT+1(p,0) =

0. The value of a previously exercised option is

zero, regardless of the price of the commodity:

Vt(p,1) = 0. A numerical implementation of

this model is contained in demdp04. Note that

there are four errata in the description of this

model on p.197 of the text.

Let us now consider some continuous state,

continuous choice models. An economy pro-

duces a single composite good. Each year,

there is a predetermined amount of the good s

in stock, of which x is invested and the remain-

der, s−x, is consumed, yielding a social benefit

u(s−x). The amount of the good available is a

controlled continuous–valued Markov process:

st+1 = γxt + εt+1h(xt)



where the first term represents depreciation (γ
is the capital survival rate), h is the aggregate
production function, and ε is a positive produc-
tion shock with mean of unity. What balance
of consumption and investment will maximize
the social planner’s objective of current and
expected future social benefits?

This is an infinite horizon stochastic model,
with the state variable s representing the amount
of the good available each year, and the action
variable x being the amount invested. The
state transition function is

g(s, x, ε) = γx + εh(x)

with reward function

f(s, x) = u(s− x)

Given a stock s, the sum of current and ex-
pected future benefits satisfies the Bellman
equation

V (s) = max
0≤x≤s

{u(s− x) + δEV (γx + εh(x))}



If we assume that u′(0) = ∞ and h(0) = 0, the

constraints will never be binding at an opti-

mum: that is, there will be an interior solution

to the problem, satisfying the Euler conditions

u′(s− x)− δE[λ(γx + εh(x))(γx + εh′(x))] = 0

λ(s) = u′(s− x)

which taken together imply that along the op-

timal path

u′t = δEt[u
′
t+1(γ + εt+1h′(x))]

where u′t is the current marginal utility of con-

sumption, and εt+1h′(x) is the following pe-

riod’s marginal product of capital. The utility

derived from consuming one unit of the good

today must equal the discounted expected util-

ity derived from investing one unit of the good

and consuming its yield tomorrow.



A certainty–equivalent steady state may be de-

rived by setting ε to its mean of unity and solv-

ing the nonlinear equation system

u′(s∗ − x∗) = δλ∗(γ + h′(x∗))

λ∗ = u′(s∗ − x∗)

s∗ = γx∗ + h(x∗)

where the starred variables are the steady–

state values. These conditions imply the “golden

rule” of economic growth models: that 1−γ+

r = h′(x∗), where δ = 1/(1 + r). This states

that the marginal product of capital must equal

the capital depreciation rate plus the discount

rate.

A numerical example of this model is presented

in demo demdp07.

Let us now consider an example based on the

mine management problem. Each year begins

with a stock of ore s and an extraction amount



x, which involves a total cost c(s, x) and a rev-

enue p(x), where cs ≤ 0, cx ≥ 0, cs(s,0) = 0

and p′ < 0. Given that the current stock of ore

is s̄, what is the profit–maximizing extraction

policy?

This is an infinite horizon deterministic model.

The state variable s ∈ [0, s̄] is the stock of

ore at the beginning of the year, and the ac-

tion variable x ∈ [0, s] is the amount of ore ex-

tracted. The state transition function is merely

g(s, x) = s− x

and the reward function is

f(s, x) = p(x)x− c(s, x)

The value of a mine with ore stock s must

satisfy the Bellman equation

V (s) = max
0≤x≤s

{p(x)x− c(s, x) + δV (s− x)}

At some stock level, it may be optimal strat-

egy to abandon the mine if it is not possible



to earn a profit extracting the remaining ore.
The Euler conditions take the form of a com-
plementarity condition, with the shadow price
λ(s) of the resource derived from

p(x) + p′(x)x− cx(s, x)− δλ(s− x) = µ

λ(s) = cs(s, x) + δλ(s− x) + max(µ,0)

where the ore extracted x and the long–run
marginal profit of extraction µ must satisfy the
complementarity condition

0 ≤ x ≤ s

x > 0 → µ ≥ 0

x < s → µ ≤ 0

Thus, in every period, either ore is extracted
until the long–run marginal profit is driven to
zero, or the mine is abandoned because it is
not possible to do so. There will be a unique
steady state in which the mine will be aban-
doned when the ore stock reaches the criti-
cal level s∗, derived from cs(s∗,0) = 0. Un-
til the mine is abandoned, it will be operated



such that the marginal revenue of extracted

ore equals the shadow price of unextracted ore

plus the marginal cost of extraction:

pt + p′txt = cxt + δλt+1

and the shadow price of unextracted ore will

rise, at the same rate at which the cost of

extraction rises as a function of the remaining

stock.

A numerical example of this model is presented

in demo demdp09.

As the last model in this category, let us con-

sider a production–inventory model. The firm

chooses to maximize long–run profit by man-

aging its levels of production and inventories.

Each period the firm has a predetermined stock

of inventory s and decides how much to pro-

duce (q) and how much to store (x), buying or

selling the resulting difference s + q − x on the



open market at the price p. The firm’s produc-

tion and storage costs are given by functions

c(q) and k(x) respectively, and the market price

follows an exogenous Markov process

pt+1 = h(pt, εt+1)

This is an infinite horizon stochastic model

with two state variables: s ∈ [0,∞) and p ∈
[0,∞) measuring beginning inventories and the

current market price, respectively. There are

two action variables, q ∈ [0,∞) and x ∈ [0,∞),

with state transition function

g(s, p, q, x, ε) = (x, h(p, ε))

and reward function

f(s, p, q, x) = p(s + q − x)− c(q)− k(x)

The value of the firm, given the initial condi-

tions, satisfies the Bellman equation

V (s, p) = max
0≤q,0≤x

{p(s + q − x)− c(q)− k(x) +

δEV (x, h(p, ε))}



If production is subject to increasing marginal

costs and c′(0) is sufficiently small, production

will be positive in all states, and the shadow

price of beginning inventories λ(s, p) will satisfy

the Euler conditions

p = c′(q)

δEλ(x, h(p, ε))− p− k′(x) = µ

λ(s, p) = p

x ≥ 0, µ ≤ 0, x > 0 → µ = 0

It follows that along the optimal path

pt = c′t
xt ≥ 0

δEpt+1 − pt − k′t ≤ 0

x > 0 → δEpt+1 − pt − k′t = 0

Implying that the firm’s production and stor-

age decisions are independent. Production is

governed by the familiar short–run condition

for profit maximization, that marginal revenue



be set equal to marginal cost. Storage is en-

tirely driven by intertemporal arbitrage oppor-

tunities. If the expected marginal profit from

storage is negative, no storage is undertaken.

Otherwise, stocks are accumulated up to the

point at which the marginal cost of storage

equals the expected appreciation in the mar-

ket price, in present value terms.

A numerical example of this model is presented

in demo demdp13.

In the remaining section of the module, we

will discuss the computational methodologies

for solution of these discrete time, continuous

state dynamic models.


