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Discrete time, continuous state dynamic
models: solution methods

We consider now solution methods for discrete–
time models in which decisions are made over
continuous state variables. These models give
rise to functional equations whose unknowns
are entire functions defined on a subset of Eu-
clidean space: for instance, the unknown of
the Bellman equation

V (s) = max
x∈X(s)

{f(s, x) + δEV (g(s, x, ε))}

is the value function V (.). In most applica-
tions, these functional equations lack closed–
form solutions, and can only be solved by nu-
merical approximation methods. One numeri-
cal method widely used by economists is linear–
quadratic–[Gaussian] (LQG) approximation, but



it is often inadequate to deal with the sorts

of models which may be encountered. A more

generally useful method, developed in the phys-

ical sciences, is that of collocation, which is

flexible, accurate, and numerically efficient. We

will now describe the collocation method, after

presenting the LQG method.

Linear–quadratic–[Gaussian] control

The linear–quadratic control model is an un-

constrained Markov decision model with a quadratic

reward function f(s, x) and a linear state tran-

sition function g(s, x, ε). It is of special im-

portance because it is one of the few contin-

uous state Markov decision models known to

have a finite–dimensional solution: the opti-

mal policy and shadow price functions of the

infinite–horizon LQ control problem are both

linear in the state variable. The parameters of

the shadow price function are characterized by



nonlinear fixed–point Riccati equations, which

may be solved for each period with backward

recursion. Thus standard nonlinear equation

solution methods may be used to solve a LQ

problem.

The LQ model may also be applied in a stochas-

tic context, with “well-behaved” (Gaussian)

errors, since the shadow price and optimal pol-

icy functions depend only on the mean (or

expected value) of the shock to each state,

rather than on the variance or higher moments

of the shock process. This gives rise to “cer-

tainty equivalence”, in which one may replace

the expectation of the shock with its mean,

and solving the resulting deterministic prob-

lem. The problem is then known as an LQG

problem.

The LQ methodology is often applied to more

complex models (e.g. those not possessing a



linear state transition function: for instance,

a macroeconomic model that cannot be lin-

earized) by replacing the nonlinear f and g

functions with linear and quadratic approxi-

mants, and solving the resulting LQ problem.

These approximations are characteristically de-

rived by forming first– and second–order Tay-

lor expansions around the certainty–equivalent

steady state of the model. However, that method-

ology requires that the steady state of the

model is computable, and that Taylor expan-

sions around that steady state will not experi-

ence too much curvature in the relevant func-

tions. Likewise, this linearization process usu-

ally discards any constraints on the states and

actions. If those constraints are binding in the

neighborhood of the steady state (e.g., the

Federal Reserve’s ability to lower interest rates

at this point in time is limited), then the LQ

approximation will be particularly poor. There-

fore, methods which do not rely on these Tay-

lor approximations are to be preferred.



Bellman equation collocation methods

Consider an infinite–horizon discrete–time model

with a one–dimensional state and action space

and univariate shocks. In a continuous state

context, this model has the Bellman equation

V (s) = max
x∈X(s)

{f(s, x) + δEV (g(s, x, ε))}

Assume that the state space is a bounded in-

terval S of the real line, and that the actions

are either discrete or continuous and subject

to simple bounds a(s) ≤ x ≤ b(s) that are con-

tinuous functions of the state.

To compute an approximate solution using col-

location methods, we first write the value func-

tion approximant as a linear combination of n

known basis functions φ1, φ2, . . . , φn on S with

undetermined coefficients:

V (s) ≈
n∑

j=1

cjφj(s)



Second, fix the basis function coefficients

c1, c2, . . . , cn by requiring the value function to

satisfy the Bellman equation at n collocation

nodes s1, s2, . . . , sn. This strategy replaces the

Bellman functional equation with a system of

n nonlinear equations in n unknowns:

n∑
j=1

cjφj(si) =

max
x∈X(si)

{f(si, x) + δE
n∑

j=1

cjφj(g(si, x, ε))}

which may be compactly expressed in vector

form as the collocation equation ΦC = v(c)

where ΦC, the collocation matrix, is an n x n

matrix whose typical i j element is the jth basis

function evaluated at the ith collocation node.

When v, the collocation function, is evaluated

at a particular vector of basis coefficients c,

it yields a vector whose ith entry is the value

obtained by solving the optimization problem

embedded in the Bellman equation at the ith



collocation node si, replacing the value func-

tion V with its approximant
∑

j cjφj.

In principle, the collocation equation may be

solved with any nonlinear equation solution method:

as a fixed–point problem c = Φ−1v(c), or as a

root–finding problem ΦC−v(c) = 0, solving for

c using Newton’s method or a quasi–Newton

method.

If the problem is stochastic, expectations must

be computed in a practical manner: for in-

stance, by replacing the continuous random

variable ε in the state transition function g with

a discrete approximant: for instance, one that

assumes values ε1, ε2, . . . , εk with probabilities

w1, w2, . . . , wk respectively. This is known as

a numerical quadrature method, which com-

putes discrete integrals as approximations to

the continuous probability density function.



A number of practical decisions must be made

when applying the collocation method. The

basis functions (interpolators, such as spline

functions) and collocation nodes must be se-

lected, and an algorithm for solving the col-

location equation chosen. Last, an appropri-

ate quadrature technique for dealing with ex-

pectations must be selected. The choice of

basis–node scheme will depend on the curva-

ture of the value function. The larger the num-

ber of basis functions and collocation nodes,

the greater the computational burden, so the

researcher will want to experiment with vari-

ous basis–node schemes and dimensions of the

problem to render it computationally efficient.

Collocation methods address many of the short-

comings of LQ approximations, since they em-

ploy global (rather than local) function ap-

proximation schemes, and are not limited to

the first– and second–degree approximations



afforded by LQ methods. However, polyno-

mial and spline approximants used in colloca-

tion methods can behave strangely, especially

in the presence of nondifferentiabilities in the

value function and binding constraints on the

action variables (which may cause problems of

nonconvergence).

Although we have discussed collocation meth-

ods for a very simple problem, the routines in-

cluded in the CEtools MATLAB toolbox will

support solution of models with multidimen-

sional states, actions, and shocks. The ma-

jor computational challenge in implementing

these methods for any model is the implemen-

tation of the vmax(s,c) function: a function

that solves the optimization problem embed-

ded in the Bellman equation at the colloca-

tion nodes and returns the collocation func-

tion values and derivatives. The vmax function

will return several objects: an n x 1 vector v



of optimal values at the collocation nodes, an

n x 1 vector x of associated optimal actions

at the nodes, and an n x n matrix vjac, the

Jacobian of the collocation function evaluated

at the basis coefficients c.

After the collocation method has rendered a

solution, the residual function should be com-

puted to evaluate the quality of the approxi-

mation. This function measures the difference

between the left and right sides of the Bellman

equation at arbitrary states s when thee value

function is replaced with its approximant (and

the optimal basis coefficients c). It would be

zero for all states in an exact solution, and will

be zero at the collocation nodes for any so-

lution. If the approximation is adequate, the

residual function will not depart too far from

zero for any arbitrary value of the state in the

interval S. If large residuals are obtained, the

problem should be re–solved using a different

basis–node scheme.



We now consider numerical solutions via collo-

cation methods for several of the models dis-

cussed in the last section. In the asset replace-

ment problem of 8.3.1, the stochastic element

of the problem is taken to be the replacement

cost k:

kt+1 = k̄ + γ(kt − k̄) + εt+1

where ε is an i.i.d. normal shock with mean

zero and variance σ2. In the implementation

of the collocation method, the shock is dis-

cretized using a five–node Gaussian quadrature

scheme. Solution to the problem (demdp01)

demonstrates that for a given asset age, the

value of the firm is a downward–sloping func-

tion of the replacement cost. The function is

kinked at the critical replacement cost, below

which the asset is to be replaced. The younger

the asset, the greater the value of the firm.

In the economic growth example of 8.4.1, the

model is operationalized by assuming a social



benefit function u(c) = c1−α/(1−α), with α=0.2,

and an aggregate production function h(x) =

xβ, with β=0.5. The shock process, which

modifies the value of production, is taken to be

lognormal with variance σ2=0.01. The model

is coded to incorporate the constraints on the

action variable: in this case, to specify that

investment x must be non–negative and no

greater than s. The model function must also

specify the reward function value, the state

transition function, and the analytical first and

second derivatives of those functions. The

lognormal production shock is discretized us-

ing a three–node Gaussian quadrature scheme,

and a polynomial basis is used on the interval

[5,10] for the space of expected wealth. As

we see from the graphs (demdp07) of a Monte

Carlo simulation of this model, the steady state

distribution is centered on the value of the

certainty–equivalent path of expected wealth,

which converges asymptotically to about 7.5

units after 10 years or so.



In the continuous–state mine management prob-

lem of 8.4.3, the model is solved using an in-

verse demand function p(x) = a1−a2x (that is,

linear demand) and a cost of extraction func-

tion c(s, x) = b1x−0.5b2x(2s−x) which causes

the cost of extraction to rise with the depletion

of the mine. Constraints, as in the problem

above, are placed on the action space to indi-

cate that the extraction (or “harvest”) must

be non–negative and no greater than s. So-

lution of the model indicates a shadow price

function with a kink at two units of remaining

stock: that is, beyond that point, extraction

will never be the optimal strategy. This model

is illustrated in demdp09.

Finally, in the production–inventory example of

8.4.7, the model is operationalized with quadratic

production and cost–of–storage functions: c(q) =

c1q+0.5c2q2 and k(x) = k1x+0.5k2x2, respec-

tively. The evolution of the market price is



governed by pt+1 = p̄ + ρ(pt− p̄)+ ε where the

latter is an i.i.d. normal shock. The model is

considerably more complex in its solution since

it is characterized by two states and two ac-

tions, requiring two–dimensional grids in each

of these spaces. Since the price process is

mean–reverting, the optimal inventory policy

will be to store nothing if the price is suffi-

ciently high, since it is likely to fall, and the

cost of storage will exceed expected apprecia-

tion of the good. For sufficiently low prices,

it will be economical to hold inventories, since

in that instance the expected appreciation of

the good will exceed the cost of storage. The

value of the firm is an increasing function of

both the market price and beginning invento-

ries. With low prices, a simulation (demdp13)

reveals that the firm will obtain substantial

stocks at the outset, but is expected to gradu-

ally reduce those stocks over time, reaching a

small steady–state mean value of inventories.


