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Chapter 2: The simple regression model

Most of this course will be concerned with use

of a regression model: a structure in which

one or more explanatory variables are consid-

ered to generate an outcome variable, or de-

pendent variable.We begin by considering the

simple regression model, in which a single ex-

planatory, or independent, variable is involved.

We often speak of this as ‘two-variable’ regres-

sion, or ‘Y on X regression’. Algebraically,

yi = β0 + β1xi + ui (1)

is the relationship presumed to hold in the pop-

ulation for each observation i. The values of y

are expected to lie on a straight line, depending

on the corresponding values of x. Their values

will differ from those predicted by that line by



the amount of the error term, or disturbance,

u, which expresses the net effect of all factors

other than x on the outcome y−that is, it re-

flects the assumption of ceteris paribus. We

often speak of x as the ‘regressor’ in this rela-

tionship; less commonly we speak of y as the

‘regressand.’ The coefficients of the relation-

ship, β0 and β1, are the regression parameters,

to be estimated from a sample. They are pre-

sumed constant in the population, so that the

effect of a one-unit change in x on y is assumed

constant for all values of x.

As long as we include an intercept in the rela-

tionship, we can always assume that E (u) = 0,

since a nonzero mean for u could be absorbed

by the intercept term.

The crucial assumption in this regression model

involves the relationship between x and u. We



consider x a random variable, as is u, and con-

cern ourselves with the conditional distribution

of u given x. If that distribution is equivalent to

the unconditional distribution of u, then we can

conclude that there is no relationship between

x and u−which, as we will see, makes the es-

timation problem much more straightforward.

To state this formally, we assume that

E (u | x) = E (u) = 0 (2)

or that the u process has a zero conditional

mean. This assumption states that the unob-

served factors involved in the regression func-

tion are not related in any systematic manner

to the observed factors. For instance, con-

sider a regression of individuals’ hourly wage

on the number of years of education they have

completed. There are, of course, many factors

influencing the hourly wage earned beyond the

number of years of formal schooling. In work-

ing with this regression function, we are as-

suming that the unobserved factors–excluded



from the regression we estimate, and thus rel-

egated to the u term–are not systematically

related to years of formal schooling. This may

not be a tenable assumption; we might con-

sider “innate ability” as such a factor, and it

is probably related to success in both the edu-

cational process and the workplace. Thus, in-

nate ability–which we cannot measure without

some proxies–may be positively correlated to

the education variable, which would invalidate

assumption (2).

The population regression function, given

the zero conditional mean assumption, is

E (y | x) = β0 + β1xi (3)

This allows us to separate y into two parts:

the systematic part, related to x, and the un-

systematic part, which is related to u. As long

as assumption (2) holds, those two compo-

nents are independent in the statistical sense.



Let us now derive the least squares estimates

of the regression parameters.

Let [(xi, yi) : i = 1, ..., n] denote a random sam-

ple of size n from the population, where yi

and xi are presumed to obey the relation (1).

The assumption (2) allows us to state that

E(u) = 0, and given that assumption, that

Cov(x, u) = E(xu) = 0, where Cov(·) denotes

the covariance between the random variables.

These assumptions can be written in terms of

the regression error:

E (yi − β0 − β1xi) = 0 (4)

E [xi (yi − β0 − β1xi)] = 0

These two equations place two restrictions on

the joint probability distribution of x and u.

Since there are two unknown parameters to be

estimated, we might look upon these equations

to provide solutions for those two parameters.



We choose estimators b0 and b1 to solve the

sample counterparts of these equations, mak-

ing use of the principle of the method of mo-

ments:

n−1
n

∑

i=1

(yi − b0 − b1xi) = 0 (5)

n−1
n

∑

i=1

xi (yi − b0 − b1xi) = 0

the so-called normal equations of least squares.

Why is this method said to be “least squares”?

Because as we shall see, it is equivalent to min-

imizing the sum of squares of the regression

residuals. How do we arrive at the solution?

The first “normal equation” can be seen to be

b0 = ȳ − b1x̄ (6)

where ȳ and x̄ are the sample averages of those

variables. This implies that the regression line



passes through the point of means of the sam-

ple data. Substituting this solution into the

second normal equation, we now have one equa-

tion in one unknown, b1 :

0 =
n

∑

i=1

xi (yi − (ȳ − b1x̄) − b1xi)

n
∑

i=1

xi (yi − ȳ) = b1

n
∑

i=1

xi (xi − x̄)

b1 =

∑n
i=1 (xi − x̄) (yi − ȳ)

∑n
i=1 (xi − x̄)2

b1 =
Cov(x, y)

V ar(x)
(7)

where the slope estimate is merely the ratio of

the sample covariance of the two variables to

the variance of x, which, must be nonzero for

the estimates to be computed. This merely

implies that not all of the sample values of x



can take on the same value. There must be

diversity in the observed values of x. These

estimates–b0 and b1−are said to be the ordi-

nary least squares (OLS) estimates of the

regression parameters, since they can be de-

rived by solving the least squares problem:

min
b0,b1

S =
n

∑

i=1

e2i =
n

∑

i=1

(yi − b0 − b1xi)
2 (8)

Here we minimize the sum of squared residu-

als, or differences between the regression line

and the values of y, by choosing b0 and b1.

If we take the derivatives ∂S/∂b0 and ∂S/∂b1
and set the resulting first order conditions to

zero, the two equations that result are exactly

the OLS solutions for the estimated parame-

ters shown above. The “least squares” esti-

mates minimize the sum of squared residuals,

in the sense that any other line drawn through

the scatter of (x, y) points would yield a larger



sum of squared residuals. The OLS estimates

provide the unique solution to this problem,

and can always be computed if (i) V ar(x) > 0

and (ii) n ≥ 2. The estimated OLS regression

line is then

ŷi = b0 + b1xi (9)

where the “hat” denotes the predicted value

of y corresponding to that value of x. This is

the sample regression function (SRF), cor-

responding to the population regression func-

tion, or PRF (3). The population regression

function is fixed, but unknown, in the popu-

lation; the SRF is a function of the particular

sample that we have used to derive it, and a

different SRF will be forthcoming from a differ-

ent sample. The primary interest in these es-

timates usually involves b1 = ∂y/∂x = ∆y/∆x,

the amount by which y is predicted to change

from a unit change in the level of x. This slope



is often of economic interest, whereas the con-

stant term in many regressions is devoid of

economic meaning. For instance, a regres-

sion of major companies’ CEO salaries on the

firms’ return on equity–a measure of economic

performance–yields the regression estimates

Ŝ = 963.191 + 18.501r (10)

where S is the CEO’s annual salary, in thou-

sands of 1990 dollars, and r is average re-

turn on equity over the prior three years, in

per cent. This implies that a one percent in-

crease in ROE over the past three years is

worth $18,501 to a CEO, on average. The

average annual salary for the 209 CEOs in the

sample is $1.28 million, so the increment is

about 1.4% of that average salary. The SRF

can also be used to predict what a CEO will

earn for any level of ROE; points on the esti-

mated regression function are such predictions.

Mechanics of OLS



Some algebraic properties of the OLS regres-

sion line:

(1) The sum (and average) of the OLS resid-

uals is zero:
n

∑

i=1

ei = 0 (11)

which follows from the first normal equation,

which specifies that the estimated regression

line goes through the point of means (x̄, ȳ), so

that the mean residual must be zero.

(2) By construction, the sample covariance be-

tween the OLS residuals and the regressor is

zero:

Cov(e, x) =
n

∑

i=1

xiei = 0 (12)

This is not an assumption, but follows directly

from the second normal equation. The esti-

mated coefficients, which give rise to the resid-

uals, are chosen to make it so.



(3) Each value of the dependent variable may

be written in terms of its prediction and its

error, or regression residual:

yi = ŷi + ei

so that OLS decomposes each yi into two parts:

a fitted value, and a residual. Property (3) also

implies that Cov(e, ŷ) = 0, since ŷ is a linear

transformation of x, and linear transformations

have linear effects on covariances. Thus, the

fitted values and residuals are uncorrelated in

the sample. Taking this property and applying

it to the entire sample, we define

SST =
n

∑

i=1

(yi − ȳ)2

SSE =
n

∑

i=1

(ŷi − ȳ)2

SSR =
n

∑

i=1

e2i



as the Total sum of squares, Explained sum

of squares, and Residual sum of squares, re-

spectively. Note that SST expresses the total

variation in y around its mean (and we do not

strive to “explain” its mean; only how it varies

about its mean). The second quantity, SSE,

expresses the variation of the predicted values

of y around the mean value of y (and it is trivial

to show that ŷ has the same mean as y). The

third quantity, SSR, is the same as the least

squares criterion S from (8). (Note that some

textbooks interchange the definitions of SSE

and SSR, since both “explained” and “error”

start with E, and “regression” and “residual”

start with R). Given these sums of squares, we

can generalize the decomposition mentioned

above into

SST = SSE + SSR (13)

or, the total variation in y may be divided into

that explained and that unexplained, i.e. left



in the residual category. To prove the validity

of (13), note that

n
∑

i=1

(yi − ȳ)2 =
n

∑

i=1

((yi − ŷi) + (ŷi − ȳ))2

=
n

∑

i=1

[ei + (ŷi − ȳ)]2

=
n

∑

i=1

e2i + 2
n

∑

i=1

ei (ŷi − ȳ) +

n
∑

i=1

(ŷi − ȳ)2

SST = SSR + SSE

given that the middle term in this expression

is equal to zero. But this term is the sample

covariance of e and y, given a zero mean for

e, and by (12) we have established that this is

zero.



How good a job does this SRF do? Does the

regression function explain a great deal of the

variation of y, or not very much? That can

now be answered by making use of these sums

of squares:

R2 = [rxy]
2 =

SSE

SST
= 1 − SSR

SST

The R2 measure (sometimes termed the coef-

ficient of determination) expresses the percent

of variation in y around its mean “explained”

by the regression function. It is an r, or simple

correlation coefficient, squared, in this case of

simple regression on a single x variable. Since

the correlation between two variables ranges

between -1 and +1, the squared correlation

ranges between 0 and 1. In that sense, R2

is like a batting average. In the case where

R2 = 0, the model we have built fails to ex-

plain any of the variation in the y values around

their mean–unlikely, but it is certainly possible

to have a very low value of R2. In the case



where R2 = 1, all of the points lie on the SRF.

That is unlikely when n > 2, but it may be

the case that all points lie close to the line,

in which case R2 will approach 1. We can-

not make any statistical judgment based di-

rectly on R2, or even say that a model with

a higher R2 and the same dependent variable

is necessarily a better model; but other things

equal, a higher R2 will be forthcoming from a

model that captures more of y′s behavior. In

cross-sectional analyses, where we are trying

to understand the idiosyncracies of individual

behavior, very low R2 values are common, and

do not necessarily denote a failure to build a

useful model.

Important issues in evaluating applied work:

how do the quantities we have estimated change

when the units of measurement are changed?

In the estimated model of CEO salaries, since

the y variable was measured in thousands of



dollars, the intercept and slope coefficient refer

to those units as well. If we measured salaries

in dollars, the intercept and slope would be

multiplied by 1000, but nothing would change.

The correlation between y and x is not af-

fected by linear transformations, so we would

not alter the R2 of this equation by changing

its units of measurement. Likewise, if ROE

was measured in decimals rather than per cent,

it would merely change the units of measure-

ment of the slope coefficient. Dividing r by

100 would cause the slope to be multiplied by

100. In the original (10), with r in percent, the

slope is 18.501 (thousands of dollars per one

unit change in r). If we expressed r in decimal

form, the slope would be 1850.1. A change in

r from 0.10 to 0.11 – a one per cent increase

in ROE–would be associated with a change

in salary of (0.01)(1850.1)=18.501 thousand

dollars. Again, the correlation between salary

and ROE would not be altered. This also ap-

plies for a transformation such as F = 32+9
5C;



it would not matter whether we viewed tem-

perature in degrees F or degrees C as a causal

factor in estimating the demand for heating oil,

since the correlation between the dependent

variable and temperature would be unchanged

by switching from Fahrenheit to Celsius de-

grees.

Functional form

Simple linear regression would seem to be a

workable tool if we have a presumed linear re-

lationship between y and x, but what if theory

suggests that the relation should be nonlinear?

It turns out that the “linearity” of regression

refers to y being expressed as a linear func-

tion of x−but neither y nor x need be the “raw

data” of our analysis. For instance, regressing

y on t (a time trend) would allow us to analyse

a linear trend, or constant growth, in the data.



What if we expect the data to exhibit expo-

nential growth, as would population, or sums

earning compound interest? If the underlying

model is

y = A exp (rt) (14)

log y = logA + rt

y∗ = A∗ + rt (15)

so that the “single-log” transformation may

be used to express a constant-growth relation-

ship, in which r is the regression slope coef-

ficient that directly estimates ∂ log y/∂t. Like-

wise, the “double-log” transformation can be

used to express a constant-elasticity relation-

ship, such as that of a Cobb-Douglas function:

y = Axα (16)

log y = logA + α log x

y∗ = A∗ + αx∗



In this context, the slope coefficient α is an

estimate of the elasticity of y with respect to

x, given that ηy,x = ∂ log y/∂ log x by the defini-

tion of elasticity. The original equation is non-

linear, but the transformed equation is a linear

function which may be estimated by OLS re-

gression.

Likewise, a model in which y is thought to de-

pend on 1/x (the reciprocal model) may be

estimated by linear regression by just defin-

ing a new variable, z, equal to 1/x (presuming

x > 0). That model has an interesting inter-

pretation if you work out its algebra.

We often use a polynomial form to allow for

nonlinearities in a regression relationship. For

instance, rather than including only x as a re-

gressor, we may include x and x2. Although

this relationship is linear in the parameters, it

implies that ∂Y
∂x = β + 2γx, so that the effect



of x on Y now depends on the level of x for

that observation, rather than being a constant

factor.

Properties of OLS estimators

Now let us consider the properties of the re-

gression estimators we have derived, consider-

ing b0 and b1 as estimators of their respective

population quantities. To establish the unbi-

asedness of these estimators, we must make

several assumptions:

Proposition 1 SLR1: in the population, the

dependent variable y is related to the indepen-

dent variable x and the error u as

y = β0 + β1x + u (17)

Proposition 2 SLR2: we can estimate the pop-

ulation parameters from a sample of size n,

{(xi, yi), i = 1, ..., n}.



Proposition 3 SLR3: the error process has a

zero conditional mean:

E (u | x) = 0. (18)

Proposition 4 SLR4: the independent vari-

able x has a positive variance:

(n − 1)−1
n

∑

i=1

(xi − x̄)2 > 0. (19)

Given these four assumptions, we may pro-

ceed, considering the intercept and slope esti-

mators as random variables. For the slope es-

timator; we may express the estimator in terms

of population coefficients and errors:

b1 =

∑n
i=1 (xi − x̄) (yi − ȳ)

∑n
i=1 (xi − x̄)2

=

∑n
i=1 (xi − x̄) yi

s2x
(20)

where we have defined s2x as the total variation

in x (not the variance of x). Substituting, we

can write the slope estimator as:



b1 =

∑n
i=1 (xi − x̄) yi

s2x

=

∑n
i=1 (xi − x̄) (β0 + β1xi + ui)

s2x

=
β0

∑n
i=1 (xi − x̄) + β1

∑n
i=1 (xi − x̄)xi +

∑n
i=1 (xi − x̄)ui

s2
x

(21)

We can show that the first term in the nu-

merator is algebraically zero, given that the

deviations around the mean sum to zero. The

second term can be written as
∑n

i=1 (xi − x̄)2 =

s2x, so that the second term is merely β1 when

divided by s2x. Thus this expression can be rewrit-

ten as:

b1 = β1 +
1

s2x

n
∑

i=1

(xi − x̄)ui

showing that any randomness in the estimates

of b1 is derived from the errors in the sample,

weighted by the deviations of their respective



x values. Given the assumed independence of

the distributions of x and u implied by (18),

this expression implies that:

E (b1) = β1,

or that b1 is an unbiased estimate of β1, given

the propositions above. The four propositions

listed above are all crucial for this result, but

the key assumption is the independence of x

and u.

We are also concerned about the precision of

the OLS estimators. To derive an estimator

of the precision, we must add an assumption

on the distribution of the error u :

Proposition 5 SLR5: (homoskedasticity):

V ar (u | x) = V ar(u) = σ2.

This assumption states that the variance of the

error term is constant over the population, and



thus within the sample. Given (18), the con-

ditional variance is also the unconditional vari-

ance. The errors are considered drawn from a

fixed distribution, with a mean of zero and a

constant variance of σ2. If this assumption is vi-

olated, we have the condition of heteroskedas-

ticity, which will often involve the magnitude

of the error variance relating to the magnitude

of x, or to some other measurable factor.

Given this additional assumption, but no fur-

ther assumptions on the nature of the distri-

bution of u, we may demonstrate that:

V ar (b1) =
σ2

∑n
i=1 (xi − x̄)2

=
σ2

s2x
(22)

so that the precision of our estimate of the

slope is dependent upon the overall error vari-

ance, and is inversely related to the variation in

the x variable. The magnitude of x does not

matter, but its variability in the sample does



matter. If we are conducting a controlled ex-

periment (quite unlikely in economic analysis)

we would want to choose widely spread values

of x to generate the most precise estimate of

∂y/∂x.

We can likewise prove that b0 is an unbiased es-

timator of the population intercept, with sam-

pling variance:

V ar (b0) = n−1 σ2 ∑n
i=1 x2

i
∑n

i=1 (xi − x̄)2
=

σ2 ∑n
i=1 x2

i

ns2x
(23)

so that the precision of the intercept depends,

as well, upon the sample size, and the mag-

nitude of the x values. These formulas for

the sampling variances will be invalid in the

presence of heteroskedasticity–that is, when

proposition SLR5 is violated.

These formulas are not operational, since they

include the unknown parameter σ2. To calcu-

late estimates of the variances, we must first



replace σ2 with a consistent estimate, s2, de-

rives from the least squares residuals:

ei = yi − b0 − b1xi, i = 1, ..., n (24)

We cannot observe the error ui for a given ob-

servation, but we can generate a consistent es-

timate of the ith observation’s error with the ith

observation’s least squares residual, ûi. Like-

wise, a sample quantity corresponding to the

population variance σ2 can be derived from the

residuals:

s2 =
1

(n − 2)

n
∑

i=1

e2i =
SSR

(n − 2)
(25)

where the numerator is just the least squares

criterion, SSR, divided by the appropriate de-

grees of freedom. Here, two degrees of free-

dom are lost, since each residual is calculated

by replacing two population coefficients with

their sample counterparts. This now makes it



possible to generate the estimated variances

and, more usefully, the estimated standard

error of the regression slope:

sb1 =
s

sx

where s is the standard deviation, or standard

error, of the disturbance process (that is,
√

s2),

and sx is
√

s2x. It is this estimated standard

error that will be displayed on the computer

printout when you run a regression, and used

to construct confidence intervals and hypoth-

esis tests about the slope coefficient. We can

calculate the estimated standard error of the

intercept term by the same means.

Regression through the origin

We could also consider a special case of the

model above where we impose a constraint



that β0 = 0, so that y is taken to be propor-

tional to x. This will often be inappropriate; it

is generally more sensible to let the data calcu-

late the appropriate intercept term, and rees-

timate the model subject to that constraint

only if that is a reasonable course of action.

Otherwise, the resulting estimate of the slope

coefficient will be biased. Unless theory sug-

gests that a strictly proportional relationship is

appropriate, the intercept should be included in

the model.


