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Chapter 4: Multiple regression analysis:

Inference

We have discussed the conditions under which

OLS estimators are unbiased, and derived the

variances of these estimators under the Gauss-

Markov assumptions. The Gauss-Markov the-

orem establishes that OLS estimators have the

smallest variance of any linear unbiased estima-

tors of the population parameters. We must

now more fully characterize the sampling distri-

bution of the OLS estimators–beyond its mean

and variance–so that we may test hypotheses

on the population parameters. To make the

sampling distribution tractable, we add an as-

sumption on the distribution of the errors:



Proposition 1 MLR6 (Normality) The popu-

lation error u is independent of the explanatory

variables x1, .., xk and is normally distributed

with zero mean and constant variance: u ∼
N
(
0, σ2

)
.

This is a much stronger assumption than we

have previously made on the distribution of the

errors. The assumption of normality, as we

have stated it, subsumes both the assumption

of the error process being independent of the

explanatory variables, and that of homoskedas-

ticity. For cross-sectional regression analysis,

these six assumptions define the classical lin-

ear model. The rationale for normally dis-

tributed errors is often phrased in terms of the

many factors influencing y being additive, ap-

pealing to the Central Limit Theorem to sug-

gest that the sum of a large number of random

factors will be normally distributed. Although

we might have reason in a particular context



to doubt this rationale, we usually use it as a

working hypothesis. Various transformations–

such as taking the logarithm of the dependent

variable–are often motivated in terms of their

inducing normality in the resulting errors.

What is the importance of assuming normal-

ity for the error process? Under the assump-

tions of the classical linear model, normally dis-

tributed errors give rise to normally distributed

OLS estimators:

bj ∼ N
(
βj, V ar

(
bj
))

(1)

which will then imply that:(
bj − βj

)
σbj

∼ N (0,1) (2)

This follows since each of the bj can be writ-

ten as a linear combination of the errors in the



sample. Since we assume that the errors are in-

dependent, identically distributed normal ran-

dom variates, any linear combination of those

errors is also normally distributed. We may

also show that any linear combination of the

bj is also normally distributed, and a subset

of these estimators has a joint normal distri-

bution. These properties will come in handy

in formulating tests on the coefficient vector.

We may also show that the OLS estimators

will be approximately normally distributed (at

least in large samples), even if the underlying

errors are not normally distributed.

Testing an hypothesis on a single βj

To test hypotheses about a single population

parameter, we start with the model containing

k regressors:

y = β0 + β1x1 + β2x2 + ...+ βkxk + u (3)



Under the classical linear model assumptions,

a test statistic formed from the OLS estimates

may be expressed as:

(
bj − βj

)
sbj

∼ tn−k−1 (4)

Why does this test statistic differ from (2)

above? In that expression, we considered the

variance of bj as an expression including σ, the

unknown standard deviation of the error term

(that is,
√
σ2). In this operational test statistic

(4), we have replaced σ with a consistent es-

timate, s. That additional source of sampling

variation requires the switch from the standard

normal distribution to the t distribution, with

(n−k−1) degrees of freedom. Where n is not

all that large relative to k, the resulting t distri-

bution will have considerably fatter tails than

the standard normal. Where (n − k − 1) is a



large number–greater than 100, for instance–

the t distribution will essentially be the stan-

dard normal. The net effect is to make the

critical values larger for a finite sample, and

raise the threshold at which we will conclude

that there is adequate evidence to reject a par-

ticular hypothesis.

The test statistic (4) allows us to test hypothe-

ses regarding the population parameter βj : in

particular, to test the null hypothesis

H0 : βj = 0 (5)

for any of the regression parameters. The

“t-statistic” used for this test is merely that

printed on the output when you run a regres-

sion in Stata or any other program: the ratio

of the estimated coefficient to its estimated

standard error. If the null hypothesis is to be

rejected, the “t-stat” must be larger (in ab-

solute value) than the critical point on the t-

distribution. The “t-stat” will have the same



sign as the estimated coefficient, since the stan-

dard error is always positive. Even if βj is actu-

ally zero in the population, a sample estimate

of this parameter–bj− will never equal exactly

zero. But when should we conclude that it

could be zero? When its value cannot be dis-

tinguished from zero. There will be cause to

reject this null hypothesis if the value, scaled

by its standard error, exceeds the threshold.

For a “two-tailed test,” there will be reason to

reject the null if the “t-stat” takes on a large

negative value or a large positive value; thus

we reject in favor of the alternative hypothesis

(of βj 6= 0) in either case. This is a two-sided

alternative, giving rise to a two-tailed test. If

the hypothesis is to be tested at, e.g., the 95%

level of confidence, we use critical values from

the t-distribution which isolate 2.5% in each

tail, for a total of 5% of the mass of the dis-

tribution. When using a computer program to

calculate regression estimates, we usually are



given the “p-value” of the estimate–that is,

the tail probability corresponding to the coef-

ficient’s t-value. The p-value may usefully be

considered as the probability of observing a t-

statistic as extreme as that shown if the null

hypothesis is true. If the t-value was equal to,

e.g., the 95% critical value, the p-value would

be exactly 0.05. If the t-value was higher, the

p-value would be closer to zero, and vice versa.

Thus, we are looking for small p-values as in-

dicative of rejection. A p-value of 0.92, for in-

stance, corresponds to an hypothesis that can

be rejected at the 8% level of confidence–thus

quite irrelevant, since we would expect to find

a value that large 92% of the time under the

null hypothesis. On the other hand, a p-value

of 0.08 will reject at the 90% level, but not at

the 95% level; only 8% of the time would we

expect to find a t-statistic of that magnitude

if H0 was true.



What if we have a one-sided alternative? For

instance, we may phrase the hypothesis of in-

terest as:

H0 : βj > 0 (6)

HA : βj ≤ 0

Here, we must use the appropriate critical point

on the t-distribution to perform this test at the

same level of confidence. If the point estimate

bj is positive, then we do not have cause to

reject the null. If it is negative, we may have

cause to reject the null if it is a sufficiently

large negative value. The critical point should

be that which isolates 5% of the mass of the

distribution in that tail (for a 95% level of con-

fidence). This critical value will be smaller (in

absolute value) than that corresponding to a

two-tailed test, which isolates only 2.5% of the

mass in that tail. The computer program al-

ways provides you with a p-value for a two-

tailed test; if the p-value is 0.08, for instance,



it corresponds to a one-tailed p-value of 0.04

(that being the mass in that tail).

Testing other hypotheses about βj

Every regression output includes the informa-

tion needed to test the two-tailed or one-tailed

hypotheses that a population parameter equals

zero. What if we want to test a different hy-

pothesis about the value of that parameter?

For instance, we would not consider it sensible

for the mpc for a consumer to be zero, but we

might have an hypothesized value (of, say, 0.8)

implied by a particular theory of consumption.

How might we test this hypothesis? If the null

is stated as:

H0 : βj = aj (7)

where aj is the hypothesized value, then the

appropriate test statistic becomes:



(
bj − aj

)
sbj

∼ tn−k−1 (8)

and we may simply calculate that quantity and

compare it to the appropriate point on the t-

distribution. Most computer programs provide

you with assistance in this effort; for instance,

if we believed that aj, the coefficient on bdrms,

should be equal to $20,000 in a regression of

house prices on square footage and bdrms (e.g.

using HPRICE1), we would use Stata’s test

command:

regress price bdrms sqrft

test bdrms=20000

where we use the name of the variable as a

shorthand for the name of the coefficient on

that variable. Stata, in that instance, presents

us with:



( 1) bdrms = 20000.0

F( 1, 85) = 0.26

Prob > F = 0.6139

making use of an F-statistic, rather than a t-

statistic, to perform this test. In this partic-

ular case–of an hypothesis involving a single

regression coefficient–we may show that this

F-statistic is merely the square of the asso-

ciated t-statistic. The p-value would be the

same in either case. The estimated coefficient

is 15198.19, with an estimated standard error

of 9483.517. Plugging in these values to (8)

yields a t-statistic:

. di (_b[bdrms]-20000)/_se[bdrms]

-.50633208

which, squared, is the F-statistic shown by the

test command. Just as with tests against a



null hypothesis of zero, the results of the test

command may be used for one-tailed tests as

well as two-tailed tests; then, the magnitude of

the coefficient matters (i.e. the fact that the

estimated coefficient is about $15,000 means

we would never reject a null that it is less than

$20,000), and the p-value must be adjusted for

one tail. Any number of test commands may

be given after a regress command in Stata,

testing different hypotheses about the coeffi-

cients.

Confidence intervals

As we discussed in going over Appendix C, we

may use the point estimate and its estimated

standard error to calculate an hypothesis test

on the underlying population parameter, or we

may form a confidence interval for that pa-

rameter. Stata makes that easy in a regression



context by providing the 95% confidence inter-

val for every estimated coefficient. If you want

to use some other level of significance, you may

either use the level() option on regress (e.g.

regress price bdrms sqrft, level(90)) or you

may change the default level for this run with

set level. All further regressions will report

confidence intervals with that level of confi-

dence. To connect this concept to that of the

hypothesis test, consider that in the above ex-

ample the 95% confidence interval for βbdrms
extended from -3657.581 to 34053.96; thus,

an hypothesis test with the null that βbdrms
takes on any value in this interval (including

zero) will not lead to a rejection.

Testing hypotheses about a single linear

combination of the parameters

Economic theory will often suggest that a par-

ticular linear combination of parameters should



take on a certain value: for instance, in a

Cobb-Douglas production function, that the

slope coefficients should sum to one in the case

of constant returns to scale (CRTS):

Q = ALβ1Kβ2Eβ3 (9)

logQ = logA+ β1 logL+ β2 logK + β3 logE + υ

where K,L,E are the factors capital, labor, and

energy, respectively. We have added an error

term to the double-log-transformed version of

this model to represent it as an empirical re-

lationship. The hypothesis of CRTS may be

stated as:

H0 : β1 + β2 + β3 = 1 (10)

The test statistic for this hypothesis is quite

straightforward:

(b1 + b2 + b3 − 1)

sb1+b2+b3

∼ tn−k−1 (11)



and its numerator may be easily calculated.

The denominator, however, is not so simple; it

represents the standard error of the linear com-

bination of estimated coefficients. You may

recall that the variance of a sum of random

variables is not merely the sum of their vari-

ances, but an expression also including their

covariances, unless they are independent. The

random variables {b1, b2, b3} are not indepen-

dent of one another since the underlying re-

gressors are not independent of one another.

Each of the underlying regressors is assumed

to be independent of the error term u, but

not of the other regressors. We would expect,

for instance, that firms with a larger capital

stock also have a larger labor force, and use

more energy in the production process. The

variance (and standard error) that we need

may be readily calculated by Stata, however,

from the variance-covariance matrix of the es-

timated parameters via the test command:



test cap+labor+energy=1

will provide the appropriate test statistic, again

as an F-statistic with a p-value. You may in-

terpret this value directly. If you would like the

point and interval estimate of the hypothesized

combination, you can compute that (after a re-

gression) with the lincom (linear combination)

command:

lincom cap + labor + energy

will show the sum of those values and a confi-

dence interval for that sum.

We may also use this technique to test other

hypotheses than adding-up conditions on the

parameters. For instance, consider a two-factor

Cobb-Douglas function in which you have only

labor and capital, and you want to test the hy-

pothesis that labor’s share is 2/3. This implies



that the labor coefficient should be twice the

capital coefficient, or:

H0 : βL = 2βK, or (12)

H0 :
βL
βK

= 2, or

H0 : βL − 2βK = 0

Note that this does not allow us to test a non-

linear hypothesis on the parameters: but con-

sidering that a ratio of two parameters is a

constant is not a nonlinear restriction. In the

latter form, we may specify it to Stata’s test

command as:

test labor - 2*cap = 0

In fact, Stata will figure out that form if you

specify the hypothesis as:

test labor=2*cap



(rewriting it in the above form), but it is not

quite smart enough to handle the ratio form.

It is easy to rewrite the ratio form into one

of the other forms. Either form will produce

an F-statistic and associated p-value related to

this single linear hypothesis on the parameters

which may be used to make a judgment about

the hypothesis of interest.

Testing multiple linear restrictions

When we use the test command, an F-statistic

is reported–even when the test involves only

one coefficient–because in general, hypothesis

tests may involve more than one restriction on

the population parameters. The hypotheses

discussed above–even that of CRTS, involv-

ing several coefficients–still only represent one

restriction on the parameters. For instance, if

CRTS is imposed, the elasticities of the factors

of production must sum to one, but they may



individually take on any value. But in most

applications of multiple linear regression, we

concern ourselves with joint tests of restric-

tions on the parameters.

The simplest joint test is that which every re-

gression reports: the so-called “ANOVA F”

test, which has the null hypothesis that each

of the slopes is equal to zero. Note that in a

multiple regression, specifying that each slope

individually equals zero is not the same thing

as specifying that their sum equals zero. This

“ANOVA” (ANalysis Of VAriance) F-test is of

interest since it essentially tests whether the

entire regression has any explanatory power.

The null hypothesis, in this case, is that the

“model” is y = β0 + u : that is, none of the

explanatory variables assist in explaining the

variation in y. We cannot test any hypothesis

on the R2 of a regression, but we will see that



there is an intimate relationship between the

R2 and the ANOVA F:

R2 =
SSE

SST
(13)

F =
SSE/k

SSR/ (n− (k + 1))

∴ F =
R2/k(

1−R2
)
/ (n− (k + 1))

where the ANOVA F, the ratio of mean square

explained variation to mean square unexplained

variation, is distributed as F k
n−(k+1) under the

null hypothesis. For a simple regression, this

statistic is F1
n−2, which is identical to

(
tb1,n−2

)2
:

that is, the square of the t− statistic for the

slope coefficient, with precisely the same p−
value as that t− statistic. In a multiple regres-

sion context, we do not often find an insignif-

icant F− statistic, since the null hypothesis is

a very strong statement: that none of the ex-

planatory variables, taken singly or together,

explain any significant fraction of the variation



of y about its mean. That can happen, but it

is often somewhat unlikely.

The ANOVA F tests k exclusion restrictions:

that all k slope coefficients are jointly zero. We

may use an F-statistic to test that a number of

slope coefficients are jointly equal to zero. For

instance, consider a regression of 353 major

league baseball players’ salaries (from MLB1).

If we regress lsalary (log of player’s salary)

on years (number of years in majors), gamesyr

(number of games played per year), and sev-

eral variables indicating the position played (

frstbase, scndbase, shrtstop, thrdbase, catcher),

we get an R2 of 0.6105, and an ANOVA F

(with 7 and 345 d.f.) of 77.24 with a p−
value of zero. The overall regression is clearly

significant, and the coefficients on years and

gamesyr both have the expected positive and

significant coefficients. Only one of the five

coefficients on the positions played, however,



are significantly different from zero at the 5%

level: scndbase, with a negative value (-0.034)

and a p− value of 0.015. The frstbase and

shrtstop coefficients are also negative (but in-

significant), while the thrdbase and catcher co-

efficients are positive and insignificant. Should

we just remove all of these variables (except

for scndbase)? The F-test for these five exclu-

sion restrictions will provide an answer to that

question:

. test frstbase scndbase shrtstop

thrdbase catcher

( 1) frstbase = 0.0

( 2) scndbase = 0.0

( 3) shrtstop = 0.0

( 4) thrdbase = 0.0

( 5) catcher = 0.0

F( 5, 345) = 2.37

Prob > F = 0.0390



At the 95% level of significance, these coef-

ficients are not each zero. That result, of

course, could be largely driven by the scndbase

coefficient:

. test frstbase shrtstop thrdbase catcher

( 1) frstbase = 0.0

( 2) shrtstop = 0.0

( 3) thrdbase = 0.0

( 4) catcher = 0.0

F( 4, 345) = 1.56

Prob > F = 0.1858

So perhaps it would be sensible to remove these

four, which even when taken together do not

explain a meaningful fraction of the variation

in lsalary. But this illustrates the point of the

joint hypothesis test: the result of simulta-

neously testing several hypotheses (that, for

instance, individual coefficients are equal to

zero) cannot be inferred from the results of



the individual tests. If each coefficient is sig-

nificant, then a joint test will surely reject the

joint exclusion restriction; but the converse is

assuredly false.

Notice that a joint test of exclusion restrictions

may be easily conduced by Stata’s test com-

mand, by merely listing the variables whose co-

efficients are presumed to be zero under the

null hypothesis. The resulting test statistic

is an F with as many numerator degrees of

freedom as there are coefficients (or variables)

in the list. It can be written in terms of the

residual sums of squares (SSRs) of the “unre-

stricted” and “restricted” models:

F =
(SSRr − SSRur) /q
SSRur/ (n− k − 1)

(14)

Since adding variables to a model will never de-

crease SSR (nor decrease R2), the “restricted”

model–in which certain coefficients are not freely



estimated from the data, but constrained–must

have SSR at least as large as the “unrestricted”

model, in which all coefficients are data-determined

at their optimal values. Thus the difference

in the numerator is non-negative. If it is a

large value, then the restrictions severely di-

minish the explanatory power of the model.

The amount by which it is diminished is scaled

by the number of restrictions, q, and then di-

vided by the unrestricted model’s s2. If this ra-

tio is a large number, then the “average cost

per restriction” is large relative to the explana-

tory power of the unrestricted model, and we

have evidence against the null hypothesis (that

is, the F− statistic will be larger than the crit-

ical point on an F− table with q and (n−k−1)

degrees of freedom. If the ratio is smaller than

the critical value, we do not reject the null

hypothesis, and conclude that the restrictions

are consistent with the data. In this circum-

stance, we might then reformulate the model



with the restrictions in place, since they do

not conflict with the data. In the baseball

player salary example, we might drop the four

insignificant variables and reestimate the more

parsimonious model.

Testing general linear restrictions

The apparatus described above is far more pow-

erful than it might appear. We have considered

individual tests involving a linear combination

of the parameters (e.g. CRTS) and joint tests

involving exclusion restrictions (as in the base-

ball players’ salary example). But the “subset

F” test defined in (14) is capable of being ap-

plied to any set of linear restrictions on the

parameter vector: for instance, that β1 = 0,

β2+β3+β4 = 1, and β5 = −1. What would this

set of restrictions imply about a regression of

y on {X1, X2, X3, X4, X5}? That regression, in

its unrestricted form, would have k = 5, with 5



estimated slope coefficients and an intercept.

The joint hypotheses expressed above would

state that a restricted form of this equation

would have three fewer parameters, since β1

would be constrained to zero, β5 to -1, and

one of the coefficients {β2, β3, β4} expressed

in terms of the other two. In the terminol-

ogy of (14), q = 3. How would we test the

hypothesis? We can readily calculate SSRur,

but what about SSRr? One approach would

be to algebraically substitute the restrictions

in the model, estimate that restricted model,

and record its SSRr value. This can be done

with any computer program that estimates a

multiple regression, but it requires that you do

the algebra and transform the variables accord-

ingly. (For instance, constraining β5 to -1 im-

plies that you should form a new dependent

variable, (y +X5)). Alternatively, if you are us-

ing a computer program that can test linear

restrictions, you may use its features. Stata



will test general linear restrictions of this sort

with the test command:

regress y x1 x2 x3 x4 x5

test (x1) (x2+x3+x4=1) (x5=-1)

This composite test command prints an F-

statistic for the set of three linear restrictions

on the regression: for instance,

( 1) years = 0.0

( 2) frstbase + scndbase + shrtstop = 1.0

( 3) sbases = -1.0

F( 3, 347) = 38.54

Prob > F = 0.0000

The F-test has three numerator degrees of

freedom because you have specified three lin-

ear hypotheses to be jointly applied to the

coefficient vector. This syntax of test may



be used to construct any set of linear restric-

tions on the coefficient vector, and perform the

joint test for the validity of those restrictions.

The test statistic will reject the null hypoth-

esis (that the restrictions are consistent with

the data) if its value is large relative to the

underlying F-distribution.


