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Chapter 12: Serial correlation and heteroskedas-

ticity in time series regressions

What will happen if we violate the assump-

tion that the errors are not serially corre-

lated, or autocorrelated? We demonstrated

that the OLS estimators are unbiased, even in

the presence of autocorrelated errors, as long

as the explanatory variables are strictly exoge-

nous. This is analogous to our results in the

case of heteroskedasticity, where the presence

of heteroskedasticity alone does not cause bias

nor inconsistency in the OLS point estimates.

However, following that parallel argument, we

will be concerned with the properties of our

interval estimates and hypothesis tests in the

presence of autocorrelation.



OLS is no longer BLUE in the presence of se-

rial correlation, and the OLS standard errors

and test statistics are no longer valid, even

asymptotically. Consider a first-order Markov

error process:

ut = ρut−1 + et, |ρ| < 1 (1)

where the et are uncorrelated random variables

with mean zero and constant variance. What

will be the variance of the OLS slope estimator

in a simple (y on x) regression model? For

simplicity let us center the x series so that x̄ =

0. Then the OLS estimator will be:

b1 = β1 +

∑n
i=1 xtut
SSTx

(2)

where SSTx is the sum of squares of the x

series. In computing the variance of b1, con-

ditional on x, we must account for the serial



correlation in the u process:
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where σ2 = V ar(ut) and we have used the
fact that E

(
utut−j

)
= Cov

(
utut−j

)
= ρjσ2 in

the derivation. Notice that the first term in
this expression is merely the OLS variance of
b1 in the absence of serial correlation. When
will the second term be nonzero? When ρ

is nonzero, and the x process itself is auto-
correlated, this double summation will have a
nonzero value. But since nothing prevents the
explanatory variables from exhibiting autocor-
relation (and in fact many explanatory vari-
ables take on similar values through time) the



only way in which this second term will vanish

is if ρ is zero, and u is not serially correlated.

In the presence of serial correlation, the second

term will cause the standard OLS variances of

our regression parameters to be biased and in-

consistent. In most applications, when serial

correlation arises, ρ is positive, so that suc-

cessive errors are positively correlated. In that

case, the second term will be positive as well.

Recall that this expression is the true variance

of the regression parameter; OLS will only con-

sider the first term. In that case OLS will seri-

ously underestimate the variance of the param-

eter, and the t−statistic will be much too high.

If on the other hand ρ is negative–so that suc-

cessive errors result from an “overshooting”

process–then we may not be able to determine

the sign of the second term, since odd terms

will be negative and even terms will be positive.

Surely, though, it will not be zero. Thus the



consequence of serial correlation in the errors–

particularly if the autocorrelation is positive–

will render the standard t− and F−statistics

useless.

Serial correlation in the presence of lagged

dependent variables

A case of particular interest, even in the con-

text of simple y on x regression, is that where

the “explanatory variable” is a lagged depen-

dent variable. Suppose that the conditional

expectation of yt is linear in its past value:

E
(
yt|yt−1

)
= β0 + β1yt−1. We can always add

an error term to this relation, and write it as

yt = β0 + β1yt−1 + ut (3)

Let us first assume that the error is “well be-

haved,” i.e. E
(
ut|yt−1

)
= 0, so that there is

no correlation between the current error and



the lagged value of the dependent variable. In

this setup the explanatory variable cannot be

strictly exogenous, since there is a contempo-

raneous correlation between yt and ut by con-

struction; but in evaluating the consistency of

OLS in this context we are concerned with the

correlation between the error and yt−1, not the

correlation with yt, yt−2, and so on. In this

case, OLS would still yield unbiased and con-

sistent point estimates, with biased standard

errors, as we derived above, even if the u pro-

cess was serially correlated..

But it is often claimed that the joint presence

of a lagged dependent variable and autocor-

related errors, OLS will be inconsistent. This

arises, as it happens, from the assumption that

the u process in (3) follows a particular autore-

gressive process, such as the first-order Markov

process in (1). If this is the case, then we

do have a problem of inconsistency, but it is



arising from a different source: the misspeci-

fication of the dynamics of the model. If we

combine (3) with (1), we really have an AR(2)

model for yt, since we can lag (3) one period

and substitute it into (1) to rewrite the model

as:

yt = β0 + β1yt−1 + ρ
(
yt−1 − β0 − β1yt−2

)
+ et

= β0 (1− ρ) + (β1 + ρ) yt−1 − ρβ1yt−2 + et

= α0 + α1yt−1 + α2yt−2 + et (4)

so that the conditional expectation of yt prop-

erly depends on two lags of y, not merely one.

Thus the estimation of (3) via OLS is indeed

inconsistent, but the reason for that inconsis-

tency is that y is correctly modelled as AR(2).

The AR(1) model is seen to be a dynamic mis-

specification of (4); as is always the case, the

omission of relevant explanatory variables will



cause bias and inconsistency in OLS estimates,

especially if the excluded variables are corre-

lated with the included variables. In this case,

that correlation will almost surely be meaning-

ful. To arrive at consistent point estimates of

this model, we merely need add yt−2 to the

estimated equation. That does not deal with

the inconsistent interval estimates, which will

require a different strategy.

Testing for first-order serial correlation

Since the presence of serial correlation invali-

dates our standard hypothesis tests and inter-

val estimates, we should be concerned about

testing for it. First let us consider testing

for serial correlation in the k−variable regres-

sion model with strictly exogenous regressors–

which rules out, among other things, lagged

dependent variables.



The simplest structure which we might posit

for serially correlated errors is AR(1), the first

order Markov process, as given in (1). Let us

assume that et is uncorrelated with the entire

past history of the u process, and that et is ho-

moskedastic. The null hypothesis is H0 : ρ = 0

in the context of (1). If we could observe the

u process, we could test this hypothesis by es-

timating (1) directly. Under the maintained

assumptions, we can replace the unobservable

ut with the OLS residual vt. Thus a regres-

sion of the OLS residuals on their own lagged

values,

vt = κ+ ρvt−1 + εt, t = 2, ...n (5)

will yield a t− test. That regression can be run

with or without an intercept, and the robust

option may be used to guard against violations

of the homoskedasticity assumption. It is only

an asymptotic test, though, and may not have

much power in small samples.



A very common strategy in considering the

possibility of AR(1) errors is the Durbin-Watson

test, which is also based on the OLS residuals:

DW =

∑n
t=2

(
vt − vt−1

)2∑n
t=1 v

2
t

(6)

Simple algebra shows that the DW statistic is

closely linked to the estimate of ρ from the

large-sample test:

DW ' 2 (1− ρ̂) (7)

ρ̂ ' 1−
DW

2

The relationship is not exact because of the

difference between (n−1) terms in the numer-

ator and n terms in the denominator of the

DW test. The difficulty with the DW test is

that the critical values must be evaluated from



a table, since they depend on both the number

of regressors (k) and the sample size (n), and

are not unique: for a given level of confidence,

the table contains two values, dL and dU . If

the computed value falls below dL, the null is

clearly rejected. If it falls above dU , there is

no cause for rejection. But in the intervening

region, the test is inconclusive. The test can-

not be used on a model without a constant

term, and it is not appropriate if there are any

lagged dependent variables. You may perform

the test in Stata, after a regression, using the

estat dwatson command (in Stata 8, the dwstat

command).

In the presence of one or more lagged de-

pendent variables, an alternative statistic may

be used: Durbin’s h statistic, which merely

amounts to augmenting (5) with the explana-

tory variables from the original regression. This

test statistic may readily be calculated in Stata



with the estat durbinalt command (in Stata

8, durbina).

Testing for higher-order serial correlation

One of the disadvantages of tests for AR(1)

errors is that they consider precisely that al-

ternative hypothesis. In many cases, if there

is serial correlation in the error structure, it

may manifest itself in a more complex relation-

ship, involving higher-order autocorrelations;

e.g. AR(p). A logical extension to the test de-

scribed in 5) and the Durbin “h” test is the

Breusch-Godfrey test, which considers the

null of nonautocorrelated errors against an al-

ternative that they are AR(p). This can readily

be performed by regressing the OLS residu-

als on p lagged values, as well as the regres-

sors from the original model. The test is the

joint null hypothesis that those p coefficients



are all zero, which can be considered as an-

other nR2 Lagrange multiplier (LM) statistic,

analogous to White’s test for heteroskedastic-

ity. The test may easily be performed in Stata

using the estat bgodfrey command (in Stata

8, bgodfrey). You must specify the lag order

p to indicate the degree of autocorrelation to

be considered. If p = 1, the test is essentially

Durbin’s “h” statistic.

An even more general test often employed on

time series regression models is the Box-Pierce

or Ljung-Box Q statistic, or “portmanteau

test,” which has the null hypothesis that the

error process is “white noise,” or nonautocor-

related, versus the alternative that it is not

well behaved. The “Q” test evaluates the au-

tocorrelation function of the errors, and in that

sense is closely related to the Breusch-Godfrey

test. That test evaluates the conditional au-

tocorrelations of the residual series, whereas



the “Q” statistic uses the unconditional auto-

correlations. The “Q” test can be applied to

any time series as a test for “white noise,” or

randomness. For that reason, it is available

in Stata as the command wntestq. This test

is often reported in empirical papers as an in-

dication that the regression models presented

therein are reasonably specified.

Any of these tests may be used to evaluate the

hypothesis that the errors exhibit serial correla-

tion, or nonindependence. But caution should

be exercised when their null hypotheses are re-

jected. It is very straightforward to demon-

strate that serial correlation may be induced by

simple misspecification of the equation–for in-

stance, modeling a relationship as linear when

it is curvilinear, or when it represents expo-

nential growth. Many time series models are

misspecified in terms of inadequate dynam-

ics: that is, the relationship between y and



the regressors may involve many lags of the

regressors. If those lags are mistakenly omit-

ted, the equation suffers from misspecification

bias, and the regression residuals will reflect

the missing terms. In this context, a visual in-

spection of the residuals is often useful. User-

written Stata routines such as tsgraph, sparl

and particularly ofrtplot should be employed

to better understand the dynamics of the re-

gression function. Each may be located and

installed with Stata’s ssc command, and each

is well documented with on–line help.

Correcting for serial correlation with strictly

exogenous regressors

Since we recognize that OLS cannot provide

consistent interval estimates in the presence

of autocorrelated errors, how should we pro-

ceed? If we have strictly exogenous regressors

(in particular, no lagged dependent variables),



we may be able to obtain an appropriate esti-

mator through transformation of the model. If

the errors follow the AR(1) process in (1), we

determine that V ar(ut) = σ2
e /
(
1− ρ2

)
. Con-

sider a simple y on x regression with auto-

correlated errors following an AR(1) process.

Then simple algebra will show that the quasi-

differenced equation(
yt − ρyt−1

)
= (1− ρ)β0+β1

(
xt − ρxt−1

)
+
(
ut − ρut−1

)
(8)

will have nonautocorrelated errors, since the

error term in this equation is in fact et, by

assumption well behaved. This transforma-

tion can only be applied to observations 2, ..., n,

but we can write down the first observation in

static terms to complete that, plugging in a

zero value for the time-zero value of u. This ex-

tends to any number of explanatory variables,

as long as they are strictly exogenous; we just

quasi-difference each, and use the quasi-differenced

version in an OLS regression.



But how can we employ this strategy when

we do not know the value of ρ? It turns out

that the feasible generalized least squares

(GLS) estimator of this model merely replaces

ρ with a consistent estimate, ρ̂. The result-

ing model is asymptotically appropriate, even

if it lacks small sample properties. We can

derive an estimate of ρ from OLS residuals,

or from the calculated value of the Durbin-

Watson statistic on those residuals. Most com-

monly, if this technique is employed, we use an

algorithm that implements an iterative scheme,

revising the estimate of ρ in a number of steps

to derive the final results. One common method-

ology is the Prais-Winsten estimator, which

makes use of the first observation, transform-

ing it separately. It may be used in Stata via

the prais command. That same command

may also be used to employ the Cochrane-

Orcutt estimator, a similar iterative technique

that ignores the first observation. (In a large



sample, it will not matter if one observation

is lost). This estimator can be executed using

the corc option of the prais command.

We do not expect these estimators to provide

the same point estimates as OLS, as they are

working with a fundamentally different model.

If they provide similar point estimates, the FGLS

estimator is to be preferred, since its standard

errors are consistent. However, in the presence

of lagged dependent variables, more compli-

cated estimation techniques are required.

An aside on first differencing. An alternative

to employing the feasible GLS estimator, in

which a value of ρ inside the unit circle is esti-

mated and used to transform the data, would

be to first difference the data: that is, trans-

form the left and right hand side variables into

differences. This would indeed be the proper

procedure to follow if it was suspected that



the variables possessed a unit root in their

time series representation. But if the value of

ρ in (1) is strictly less than 1 in absolute value,

first differencing approximates that value, since

differencing is equivalent to imposing ρ = 1 on

the error process. If the process’s ρ is quite dif-

ferent from 1, first differencing is not as good

a solution as applying the FGLS estimator.

Also note that if you difference a standard re-

gression equation in y, x1, x2... you derive an

equation that does not have a constant term.

A constant term in an equation in differences

corresponds to a linear trend in the levels equa-

tion. Unless the levels equation already con-

tains a linear trend, applying differences to that

equation should result in a model without a

constant term..

Robust inference in the presence of auto-

correlation



Just as we utilized the “White” heteroskedasticity-

consistent standard errors to deal with het-

eroskedasticity of unknown form, we may gen-

erate estimates of the standard errors that are

robust to both heteroskedasticity and auto-

correlation. Why would we want to do this

rather than explicitly take account of the au-

tocorrelated errors via the feasible generalized

least squares estimator described earlier? If we

doubt that the explanatory variables may be

considered strictly exogenous, then the FGLS

estimates will not even be consistent, let alone

efficient. Also, FGLS is usually implemented

in the context of an AR(1) model, since it is

much more complex to apply it to a more com-

plex AR structure. But higher-order autocor-

relation in the errors may be quite plausible.

Robust methods may take account of that be-

havior.

The methodology to compute what are often

termed heteroskedasticity- and autocorrelation-



consistent (HAC) standard errors was devel-

oped by Newey and West; thus they are of-

ten referred to as Newey-West standard er-

rors. Unlike the White standard errors, which

require no judgment, the Newey-West stan-

dard errors must be calculated conditional on

a choice of maximum lag. They are calculated

from a distributed lag of the OLS residuals,

and one must specify the longest lag at which

autocovariances are to be computed. Normally

a lag length exceeding the periodicity of the

data will suffice; e.g. at least 4 for quar-

terly data, 12 for monthly data, etc. The

Newey-West (HAC) standard errors may be

readily calculated for any OLS regression using

Stata’s newey command. You must provide the

“option” lag( ), which specifies the maximum

lag order, and your data must be tsset (that is,

known to Stata as time series data). Since the

Newey-West formula involves an expression in

the squares of the residuals which is identical



to White’s formula (as well as a second term

in the cross-products of the residuals), these

robust estimates subsume White’s correction.

Newey-West standard errors in a time series

context are robust to both arbitrary autocor-

relation (up to the order of the chosen lag) as

well as arbitrary heteroskedasticity.

Heteroskedasticity in the time series con-

text

Heteroskedasticity can also occur in time se-

ries regression models; its presence, while not

causing bias nor inconsistency in the point es-

timates, has the usual effect of invalidating the

standard errors, t−statistics, and F−statistics,

just as in the cross–sectional case. Since the

Newey–West standard error formula subsumes

the White (robust) standard error component,

if the Newey–West standard errors are com-

puted, they will also be robust to arbitrary de-

partures from homoskedasticity. However, the



standard tests for heteroskedasticity assume

independence of the errors, so if the errors are

serially correlated, those tests will not generally

be correct. It thus makes sense to test for se-

rial correlation first (using a heteroskedasticity–

robust test if it is suspected), correct for se-

rial correlation, and then apply a test for het-

eroskedasticity.

In the time series context, it may be quite plau-

sible that if heteroskedasticity—that is, vari-

ations in volatility in a time series process—

exists, it may itself follow an autoregressive

pattern. This can be termed a dynamic form

of heteroskedasticity, in which Engle’s ARCH

(autoregressive conditional heteroskedasticity)

model applies. The simplest ARCH model may

be written as:

yt = β0 + β1zt + ut

E
(
u2
t |ut−1, ut−2, ...

)
= E

(
u2
t |ut−1

)
= α0 + α1u

2
t−1



The second line is the conditional variance of ut
given that series’ past history, assuming that

the u process is serially uncorrelated. Since

conditional variances must be positive, this only

makes sense if α0 > 0 and α1 ≥ 0. We can

rewrite the second line as:

u2
t = α0 + α1u

2
t−1 + υt

which then appears as an autoregressive model

in the squared errors, with stability condition

α1 < 1. When α1 > 0, the squared errors con-

tain positive serial correlation, even though the

errors themselves do not.

If this sort of process is evident in the regres-

sion errors, what are the consequences? First

of all, OLS are still BLUE. There are no as-

sumptions on the conditional variance of the

error process that would invalidate the use of

OLS in this context. But we may want to

explicitly model the conditional variance of the



error process, since in many financial series the

movements of volatility are of key importance

(for instance, option pricing via the standard

Black–Scholes formula requires an estimate of

the volatility of the underlying asset’s returns,

which may well be time–varying).

Estimation of ARCH models—of which there

are now many flavors, with the most common

extension being Bollerslev’s GARCH (gener-

alised ARCH)—may be performed via Stata’s

arch command. Tests for ARCH, which are

based on the squared residuals from an OLS re-

gression, are provided by Stata’s estat archlm

command (in Stata 8, the archlm command).


