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Chapter 16: Simultaneous equations mod-

els

An obvious reason for the endogeneity of ex-

planatory variables in a regression model is si-

multaneity: that is, one or more of the “ex-

planatory” variables are jointly determined with

the “dependent” variable. Models of this sort

are known as simultaneous equations mod-

els (SEMs), and they are widely utilized in

both applied microeconomics and macroeco-

nomics. Each equation in a SEM should be a

behavioral equation which describes how one

or more economic agents will react to shocks

or shifts in the exogenous explanatory vari-

ables, ceteris paribus. The simultaneously de-

termined variables often have an equilibrium



interpretation, and we consider that these vari-

ables are only observed when the underlying

model is in equilibrium. For instance, a de-

mand curve relating the quantity demanded to

the price of a good, as well as income, the

prices of substitute commodities, etc. concep-

tually would express that quantity for a range

of prices. But the only price-quantity pair that

we observe is that resulting from market clear-

ing, where the quantities supplied and demanded

were matched, and an equilibrium price was

struck. In the context of labor supply, we

might relate aggregate hours to the average

wage and additional explanatory factors:

hi = β0 + β1wi + β2z1 + ui (1)

where the unit of observation might be the

county. This is a structural equation, or be-

havioral equation, relating labor supply to its

causal factors: that is, it reflects the structure

of the supply side of the labor market. This



equation resembles many that we have consid-

ered earlier, and we might wonder why there

would be any difficulty in estimating it. But

if the data relate to an aggregate–such as the

hours worked at the county level, in response

to the average wage in the county–this equa-

tion poses problems that would not arise if, for

instance, the unit of observation was the indi-

vidual, derived from a survey. Although we can

assume that the individual is a price- (or wage-)

taker, we cannot assume that the average level

of wages is exogenous to the labor market in

Suffolk County. Rather, we must consider that

it is determined within the market, affected by

broader economic conditions. We might con-

sider that the z variable expresses wage levels

in other areas, which would cet.par. have an

effect on the supply of labor in Suffolk County;

higher wages in Middlesex County would lead

to a reduction in labor supply in the Suffolk

County labor market, cet. par.



To complete the model, we must add a speci-

fication of labor demand:

hi = γ0 + γ1wi + γ2z2 + υi (2)

where we model the quantity demanded of la-

bor as a function of the average wage and ad-

ditional factors that might shift the demand

curve. Since the demand for labor is a de-

rived demand, dependent on the cost of other

factors of production, we might include some

measure of factor cost (e.g. the cost of capi-

tal) as this equation’s z variable. In this case,

we would expect that a higher cost of capital

would trigger substitution of labor for capital

at every level of the wage, so that γ2 > 0. Note

that the supply equation represents the behav-

ior of workers in the aggregate, while the de-

mand equation represents the behavior of em-

ployers in the aggregate. In equilibrium, we

would equate these two equations, and expect

that at some level of equilibrium labor utiliza-

tion and average wage that the labor market



is equilibrated. These two equations then con-
stitute a simultaneous equations model (SEM)
of the labor market.

Neither of these equations may be consistently
estimated via OLS, since the wage variable in
each equation is correlated with the respective
error term. How do we know this? Because
these two equations can be solved and rewrit-
ten as two reduced form equations in the en-
dogenous variables hi and wi. Each of those
variables will depend on the exogenous vari-
ables in the entire system–z1 and z2–as well
as the structural errors ui and υi. In general,
any shock to either labor demand or supply
will affect both the equilibrium quantity and
price (wage). Even if we rewrote one of these
equations to place the wage variable on the left
hand side, this problem would persist: both en-
dogenous variables in the system are jointly de-
termined by the exogenous variables and struc-
tural shocks. Another implication of this struc-
ture is that we must have separate explanatory



factors in the two equations. If z1 = z2, for in-

stance, we would not be able to solve this sys-

tem and uniquely identify its structural param-

eters. There must be factors that are unique

to each structural equation that, for instance,

shift the supply curve without shifting the de-

mand curve.

The implication here is that even if we only

care about one of these structural equations–

for instance, we are tasked with modelling la-

bor supply, and have no interest in working

with the demand side of the market–we must

be able to specify the other structural equa-

tions of the model. We need not estimate

them, but we must be able to determine what

measures they would contain. For instance,

consider estimating the relationship between

murder rate, number of police, and wealth for

a number of cities. We might expect that both

of those factors would reduce the murder rate,



cet.par.: more police are available to appre-

hend murderers, and perhaps prevent murders,

while we might expect that lower-income cities

might have greater unrest and crime. But can

we reasonably assume that the number of po-

lice (per capita) is exogenous to the murder

rate? Probably not, in the sense that cities

striving to reduce crime will spend more on po-

lice. Thus we might consider a second struc-

tural equation that expressed the number of

police per capita as a function of a number of

factors. We may have no interest in estimat-

ing this equation (which is behavioral, reflect-

ing the behavior of city officials), but if we are

to consistently estimate the former equation–

the behavioral equation reflecting the behavior

of murderers–we will have to specify the sec-

ond equation as well, and collect data for its

explanatory factors.

Simultaneity bias in OLS



What goes wrong if we use OLS to estimate

a structural equation containing endogenous

explanatory variables? Consider the structural

system:

y1 = α1y2 + β1z1 + u1 (3)

y2 = α2y1 + β2z2 + u2

in which we are interested in estimating the

first equation. Assume that the z variables are

exogenous, in that each is uncorrelated with

each of the error processes u. What is the cor-

relation between y2 and u1? If we substitute

the first equation into the second, we derive:

y2 = α2 (α1y2 + β1z1 + u1) + β2z2 + u2

(1− α2α1) y2 = α2β1z1 + β2z2 + α2u1 + u2 (4)

If we assume that α2α1 6= 1, we can derive the

reduced form equation for y2 as:

y2 = π21z1 + π22z2 + υ2 (5)



where the reduced form error term υ2 = α2u1+

u2. Thus y2 depends on u1, and estimation by

OLS of the first equation in (3) will not yield

consistent estimates. We can consistently es-

timate the reduced form equation (5) via OLS,

and that in fact is an essential part of the strat-

egy of the 2SLS estimator. But the parameters

of the structural equation are nonlinear trans-

formations of the reduced form parameters, so

being able to estimate the reduced form pa-

rameters does not achieve the goal of provid-

ing us with point and interval estimates of the

structural equation.

In this special case, we can evaluate the simul-

taneity bias that would result from improperly

applying OLS to the original structural equa-

tion. The covariance of y2 and u1 is equal to

the covariance of y2 and υ2:

=
[
α2/ (1− α2α1)E

(
u2

1

)]
= [α2/ (1− α2α1)]σ2

1 (6)



If we have some priors about the signs of the

α parameters, we may sign the bias. Generally,

it could be either positive or negative; that is,

the OLS coefficient estimate could be larger

or smaller than the correct estimate, but will

not be equal to the population parameter in

an expected sense unless the bracketed expres-

sion is zero. Note that this would happen if

α2 = 0 : that is, if y2 was not simultaneously

determined with y1. But in that case, we do not

have a simultaneous system; the model in that

case is said to be a recursive system, which

may be consistently estimated with OLS.

Identifying and estimating a structural equa-

tion

The tool that we will apply to consistently

estimate structural equations such as (3) is

one that we have seen before: two-stage least

squares (2SLS). The application of 2SLS in a



structural system is more straightforward than

the general application of instrumental vari-

ables estimators, since the specification of the

system makes clear what variables are available

as instruments. Let us first consider a slightly

different two-equation structural system:

q = α1p+ β1z1 + u1 (7)

q = α2p+ u2

We presume these equations describe the work-

ings of a market, and that the equilibrium con-

dition of market clearing has been imposed.

Let q be per capita milk consumption at the

county level, p be the average price of a gallon

of milk in that county, and let z1 be the price

of cattle feed. The first structural equation

is thus the supply equation, with α1 > 0 and

β1 < 0: that is, a higher cost of production

will generally reduce the quantity supplied at

the same price per gallon. The second equa-

tion is the demand equation, where we pre-

sume that α2 < 0, reflecting the slope of the



demand curve in the {p, q} plane. Given a ran-

dom sample on {p, q, z1}, what can we achieve?

The demand equation is said to be identified–

in fact, exactly identified–since one instru-

ment is needed, and precisely one is available.

z1 is available because the demand for milk

does not depend on the price of cattle feed, so

we take advantage of an exclusion restriction

that makes z1 available to identify the demand

curve. Intuitively, we can think of variations

in z1 shifting the supply curve up and down,

tracing out the demand curve; in doing so, it

makes it possible for us to estimate the struc-

tural parameters of the demand curve.

What about the supply curve? It, also, has

a problem of simultaneity bias, but it turns

out that the supply equation is unidentified.

Given the model as we have laid it out, there

is no variable available to serve as an instru-

ment for p : that is, we need a variable that



affects demand (and shifts the demand curve)

but does not directly affect supply. In this

case, no such variable is available, and we can-

not apply the instrumental variables technique

without an instrument. What if we went back

to the drawing board, and realized that the

price of orange juice should enter the demand

equation–although it tastes terrible on corn

flakes, orange juice might be a healthy substi-

tute for quenching one’s thirst? Then the sup-

ply curve would be identified–exactly identified–

since we now would have a single instrument

that served to shift demand but did not enter

the supply relation. What if we also consid-

ered the price of beer as an additional demand

factor? Then we would have two available in-

struments (presuming that each is appropri-

ately correlated), and 2SLS would be used to

“boil them down” into the single instrument

needed. In that case, we would say that the

supply curve would be overidentified.



The identification status of each structural equa-

tion thus hinges upon exclusion restrictions:

our a priori statements that certain variables

do not appear in certain structural equations.

If they do not appear in a structural equation,

they may be used as instruments to assist in

identifying the parameters of that equation.

For these variables to successfully identify the

parameters, they must have nonzero popula-

tion parameters in the equation in which they

are included. Consider an example:

hours = f1 (log(wage), educ, age, kl6, wifeY )

log(wage) = f2

(
hours, educ, xper, xper2

)
(8)

The first equation is a labor supply relation,

expressing the number of hours worked by a

married woman as a function of her wage, ed-

ucation, age, the number of preschool children,

and non-wage income (including spouses’s earn-

ings). The second equation is a labor demand

equation, expressing the wage to be paid as



a function of hours worked, the employee’s
education, and a polynomial in her work ex-
perience. The exclusion restructions indicate
that the demand for labor does not depend on
the worker’s age (nor should it!), the presence
of preschool kids, or other resources available
to the worker. Likewise, we assume that the
woman’s willingness to participate in the mar-
ket does not depend on her labor market ex-
perience. One instrument is needed to identify
each equation; age, kl6 and wifeY are avail-
able to identify the supply equation, while xper

and xper2 are available to identify the demand
equation. This is the order condition for
identfication, essentially counting instruments
and variables to be instrumented; each equa-
tion is overidentified. But the order condition
is only necessary; the sufficient condition is the
rank condition, which essentially states that
in the reduced-form equation:

log(wage) = g
(
educ, age, kl6, wifeY, xper, xper2

)
(9)



at least one of the population coefficients on

{xper, xper2} must be nonzero. But since we

can consistently estimate this equation with

OLS, we may generate sample estimates of

those coefficients, and test the joint null that

both coefficients are zero. If that null is re-

jected, then we satisfy the rank condition for

the first equation, and we may proceed to esti-

mate it via 2SLS. The equivalent condition for

the demand equation is that at least one of the

population coefficients {age, kl6, wifeY } in the

regression of hours on the system’s exogenous

variables is nonzero. If any of those variables

are significant in the equivalent reduced-form

equation, it may be used as an instrument to

estimate the demand equation via 2SLS.

The application of two-stage least squares (via

Stata’s ivregress 2sls command) involves iden-

tifying the endogenous explanatory variable(s),

the exogenous variables that are included in



each equation, and the instruments that are

excluded from each equation. To satisfy the

order condition, the list of (excluded) instru-

ments must be at least as long as the list of en-

dogenous explanatory variables. This logic car-

ries over to structural equation systems with

more than two endogenous variables / equa-

tions; a structural model may have any num-

ber of endogenous variables, each defined by

an equation, and we can proceed to evaluate

the identification status of each equation in

turn, given the appropriate exclusion restric-

tions. Note that if an equation is uniden-

tified, due to the lack of appropriate instru-

ments, then no econometric technique may be

used to estimate its parameters. In that case,

we do not have knowledge that would allow us

to “trace out” that equation’s slope while we

move along it.



Simultaneous equations models with time

series

One of the most common applications of 2SLS

in applied work is the estimation of structural

time series models. For instance, consider a

simple macro model:

Ct = β0 + β1 (Yt − Tt) + β2rt + u1t

It = γ0 + γ1rt + u2t

Yt = Ct + It +Gt (10)

In this system, aggregate consumption each

quarter is determined jointly with disposable

income. Even if we assume that taxes are ex-

ogenous (and in fact they are responsive to

income), the consumption function cannot be

consistently estimated via OLS. If the interest

rate is taken as exogenous (set, for instance,

by monetary policy makers) then the invest-

ment equation may be consistently estimated



via OLS. The third equation is an identity; it

need not be estimated, and holds without er-

ror, but its presence makes explicit the simul-

taneous nature of the model. If r is exoge-

nous, then we need one instrument to estimate

the consumption function; government spend-

ing will suffice, and consumption will be exactly

identified. If r is to be taken as endogenous,

we would have to add at least one equation

to the model to express how monetary pol-

icy reacts to economic conditions. We might

also make the investment function more re-

alistic by including dynamics–that investment

depends on lagged income, for instance, Yt−1

(firms make investment spending plans based

on the demand for their product). This would

allow Yt−1, a predetermined variable, to be

used as an additional instrument in estimation

of the consumption function. We may also

use lags of exogenous variables–for instance,

lagged taxes or government spending–as in-

struments in this context.



Although this only scratches the surface of a

broad set of issues relating to the estimation

of structural models with time series data, it

should be clear that those models will generally

require instrumental variables techniques such

as 2SLS for the consistent estimation of their

component relationships.


