BOSTON COLLEGE

Department of Economics
EC 22801 Econometric Methods
Fall 2008, Prof. Baum, Ms. Phillips (tutor), Mr. Dmitriev (grader)
Problem Set 3
Due at classtime, Thursday 14 Oct 2008

Problem 4.1

(i) (5 marks) generally cause the t statistics not to have a t distribution under H0. Homoskedasticity is one of the CLM assumptions.
(ii) (5 marks) The CLM assumptions contain no mention of the sample correlations among independent variables, except to rule out the case where the correlation is one.
(iii) (5 marks) An important omitted variable violates Assumption MLR. 4 (zero conditional mean), t statistics doesn't have distribution under H_{0}.

Problem 4.3

(i) (10 marks) Holding profmarg fixed, \triangle rdintents $=.321 \triangle \log ($ sales $)=$ $(.321 / 100)[100 \triangle \log ($ sales $)] \approx .00321(\%$ sales $)$. Therefore, if $\% \triangle$ sales $=$ $10, \Delta r \widehat{\text { dintens }} \approx .032$, or only about $3 / 100$ of a percentage point. For such a large percentage increase in sales, this seems like a practically small effect.
(ii) (10 marks) $H_{0}: \beta_{1}=0$ versus $H_{1}: \beta_{1}>0$, where β_{1} is the population slope on \log (sales). The t statistic is $.321 / .216 \approx 1.486$. The 5% critical value for a one-tailed test, with $d f=32-3=29$, is obtained from Table G. 2 as 1.699 ; so we cannot reject H_{0} at the 5% level. But the 10% criticavalue is 1.311; since the t statistic is above this value, we reject H 0 in favor of H_{1} at the 10% level.
(iii) (5 marks) With an increase of profit margin by 1 percentage point expenditures on $\mathrm{R} \& \mathrm{D}$ rise by 0.05 percentage points. Economically it is quite large, as for 10% difference in profit margin difference will increase expendetures on $\mathrm{R} \& \mathrm{D}$ by 0.5 percentage point, which is really big, given that for a company with 100 million dollars sales they will be around 2%, so they will rise by somewhat around quarter.
(iv) (5 marks) Not really. Its t statistic is only $0.05 / 0.046=1.087$, which is well below even the 10% critical value for a one-tailed test.

Problem 4.5

(i) (5 marks) . $4121.96(.094)$, or about .228 to .596 .
(ii) (5 marks) No, because the value .4 is well inside the 95% CI.
(iii)(5 marks) Yes, because 1 is well outside the 95% CI.

Problem 4.6

(i) (10 marks) With $d f=n-2=86$, we obtain the 5% critical value from Table G. 2 with $d f=90$. Because each test is two-tailed, the critical value is 1.987. The t statistic for $H_{0}: \beta_{0}=0$ is about -.89 , which is much less than 1.987 in absolute value. Therefore, we fail to reject $\beta_{0}=0$. The t statistic for $H_{0}: \beta_{1}=1$ is $(.976-1) / .049 \approx-.49$, which is even less significant. (Remember, we reject H0 in favor of H1 in this case only if $|t|>1.987$.)
(ii)(5 marks) We use the SSR form of the F statistic. We are testing $\mathrm{q}=$ 2 restrictions and the $d f$ in the unrestricted model is 86 . We are given $S S R_{r}$ $=209,448.99$ and $S S R_{u} r=165,644.51$. Therefore,

$$
F=\frac{(209,448.99165,644.51)}{165,644.51}\left(\frac{86}{2}\right) \approx 11.37
$$

which is a strong rejection of H_{0} : from Table G.3c, the 1% critical value with 2 and $90 d f$ is 4.85 .
(iii) (10 marks) We use the R-squared form of the F statistic. We are testing $\mathrm{q}=3$ restrictions and there are $88.5=83 d f$ in the unrestricted model. The F statistic is $[(.829-.820) /(1-.829)](83 / 3) \approx 1.46$. The 10% critical value (again using 90 denominator $d f$ in Table G.3a) is 2.15 , so we fail to reject H 0 at even the 10% level. In fact, the p-value is about . 23 .
(iv)(5 marks)If heteroskedasticity were present, Assumption MLR. 5 would be violated (homoskedasticity), and the F statistic would not have an F distribution under the null hypothesis. Therefore, comparing the F statistic against the usual critical values, or obtaining the p-value from the F distribution, would not be especially meaningful.

Problem 4.7

(i) (5 marks) While the standard error on hrsemp has not changed, the magnitude of the coefficient has increased by half. The t statistic on hrsemp has gone from about 1.47 to 2.21 , so now the coefficient is statistically less
than zero at the 5% level. (From Table G. 2 the 5% critical value with $40 d f$ is 1.684 . The 1% critical value is 2.423 , so the p -value is between .01 and .05.)
(ii) (5 marks) if we add and subtract $\beta_{2} \log$ (employ) from the right-handside and collect terms, we have

$$
\begin{gathered}
\log (\text { scrap })=\beta_{0}+\beta_{1} \text { hrsemp }+\left[\beta_{2} \log (\text { employ })+\beta_{3} \log (\text { employ })\right]+u= \\
\beta_{0}+\beta_{1} \text { hrsemp }+\beta_{2} \log (\text { sales/employ })+\left(\beta_{2}+\beta_{3}\right) \log (\text { employ })+u
\end{gathered}
$$

where the second equality follows from the fact that $\log ($ sales $/$ employ $)=$ $\log ($ sales $)-\log (e m p l o y)$. Defining $\theta_{3} \equiv \beta 2+\beta 3$ gives the result.
(iii) (5 marks) No. We are interested in the coefficient on \log (employ), which has a t statistic of .2 , which is very small. Therefore, we conclude that the size of the firm, as measured by employees, does not matter, once we control for training and sales per employee (in a logarithmic functional form).
(iv) (5 marks) The null hypothesis in the model from part (ii) is H_{0} : $\beta_{2}=-1$. The t sratistic is $[-.951-(-1)] / .37 \approx .132$; this is very small, and we fail to reject whether we specify a one- or two-sided alternative.

Problem C3.2
(i) (5 marks)

The estimated equation is

$$
\begin{gathered}
\widehat{\text { price }}=-19.32+.128 s q r f t+15.20 b d r m s \\
n=88, R^{2}=.632
\end{gathered}
$$

(ii) (5 marks) Holding square footage constant, $\widehat{\triangle \text { price }}=15.20 \triangle b d r m s$, and so $\widehat{\text { price }}$ increases by 15.20 , which means $\$ 15,200$.
(iii) (5 marks) Now $\widehat{\triangle \text { price }}=.128 \triangle s q r f t+15.20 \triangle b d r m s=.128(140)+$ $15.20=33.12$,or $\$ 33,120$. Because the size of the house is increasing, this is a much larger effect than in(ii).
(iv) (5 marks) About 63.2%
(v) (5 marks) The predicted price is $-19.32+.128(2,438)+15.20(4)=$ 353.544 , or $\$ 353,544$.
(vi) (5 marks) From part (v), the estimated value of the home based only on square footage and number of bedrooms is $\$ 353,544$. The actual selling price was $\$ 300,000$, which suggests the buyer underpaid by some margin. But, of course, there are many other features of a house (some that we cannot even measure) that affect price, and we have not controlled for these.

Problem C3.4

(i) (5 marks)The minimum, maximum, and average values for these three variables are given in the table below:

Variable	Average	Minimum	Maximum
atndrte	81.71	6.25	100
priGPA	2.59	0.86	3.93
ACT	22.51	13	32

(ii) (5 marks)

```
. regress atndrte priGPA ACT
```

Source	SS	df	MS
Model	57336.7612	2	28668.3806
Residual	139980.564	677	206.765974
Total	197317.325	679	290.59989

Number of obs	$=680$	
F 2,	$677)$	$=138.65$
Prob $>$ F	$=0.0000$	
R-squared	$=0.2906$	
Adj R-squared	$=0.2885$	
Root MSE	$=14.379$	

atndrte \|	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
priGPA \|	17.26059	1.083103	15.94	0.000	15.13395	19.38724
ACT \|	-1.716553	. 169012	-10.16	0.000	-2.048404	-1.384702
_cons \|	75.7004	3.884108	19.49	0.000	68.07406	83.32675

The estimated equation is

$$
\begin{gathered}
\widehat{\text { atndrte }=} 75.70+17.26 \text { priGPA-1.72ACT } \\
n=680, R^{2}=0.291
\end{gathered}
$$

The intercept means that, for a student whose prior GPA is zero and ACT score is zero, the predicted attendance rate is 75.7%. But this is clearly not an interesting segment of the population. (In fact, there are no students in the college population with $\operatorname{priGPA}=0$ and $A C T=0$, or with values even close to zero.)
(iii) (5 marks)The coefficient on priGPA means that, if a students prior GPA is one point higher (say, from 2.0 to 3.0), the attendance rate is about 17.3 percentage points higher. This holds $A C T$ fixed. The negative coefficient on $A C T$ is, perhaps initially a bit surprising. Five more points on the $A C T$ is predicted to lower attendance by 8.6 percentage points at a given level of priGPA. As priGPA measures performance in college (and, at least partially, could reflect, past attendance rates), while $A C T$ is a measure of potential in college, it appears that students that had more promise (which could mean more innate ability) think they can get by with missing lectures.
(iv) (5 marks)We have $\widehat{\text { atndrte }}=75.70+17.267(3.65)-1.72(20) \approx 104.3$. Of course, a student cannot have higher than a 100% attendance rate. Getting predictions like this is always possible when using regression methods for dependent variables with natural upper or lower bounds. In practice, we would predict a 100% attendance rate for this student. (In fact, this student had an actual attendance rate of 87.5\%.)
(v) (5 marks)The difference in predicted attendance rates for A and B is $17.26(3.1-2.1)-(21-26)=25.86$.

Problem C3.8

(i) (5 marks)

Variable \|	Obs	Mean	Std. Dev.	Min	Max
prpblck \|	409	. 1134864	. 1824165	0	. 9816579
income \|	409	47053.78	13179.29	15919	136529

The average of prpblck is .113 with standard deviation .182 ; the average of income is $47,053.78$ with standard deviation $13,179.29$. It is evident that prpblck is a proportion and that income is measured in dollars.
(ii) (5 marks)

The results from the OLS regression are

$$
\begin{gathered}
\widehat{p s o d a}=.956+.115 \text { prpblck }+.0000016 \text { income } \\
n=401, R^{2}=.064
\end{gathered}
$$

. If say prpblck increases by . 10 (ten percentage point), the price of soda is estimated to increase by . 0115 dollars, or about 1.2 cents. While this does not seem large, there are communities with no black population and others that are almost all black, in which case the difference in psoda is estimated to be almost 11.5 cents.
(iii) (5 marks)

The simple regression estimate on prpblck is .065 , so the simple regression estimate is actually lower. This is because prpblck and income are negatively correlated (-.43) and income has a positive coefficient in the multiple regression.
(iv) (5 marks)

Source \|	SS	df MS			Number of obs = 401	
					F (2, 398)	14.08
Model \|	. 190231453	$.095115727$			Prob > F	$=0.0000$
Residual \|	2.6885186	398	. 006755072		R -squared	$=0.0661$
					Adj R-squared	0.0614
Total \|	2.87875005	400.007	. 007196875		Root MSE	$=.08219$
lpsoda \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
prpblck \|	. 1111178	. 0248154	4.48	0.000	. 0623321	. 1599035
income \|	$1.56 \mathrm{e}-06$	$3.45 \mathrm{e}-07$	4.51	0.000	8.79e-07	$2.24 \mathrm{e}-06$
_cons \|	-. 0456777	. 0181263	-2.52	0.012	-. 0813129	-. 0100425

$$
\begin{gathered}
\log (\overline{p s o d a})=-.045+.111 \text { prpblck }+1.56 e-06(\text { income }) \\
n=401, R^{2}=.067
\end{gathered}
$$

If prpblck increases by $.20, \log$ (psoda) is estimated to increase by $.20(.111)=.0222$, or about 2.22 percent.
(v) (5 marks)

$\hat{\beta}_{\text {prpblck }}$ falls to about .086 when prppovis added to the regression.
(vi) (5 marks)

```
    . corr lincome prppov
(obs=409)
\begin{tabular}{|c|c|c|}
\hline & lincome & prppov \\
\hline lincome & 1.0000 & \\
\hline prppov & -0.8385 & 1.0000 \\
\hline
\end{tabular}
```

The correlation is about -.84, which makes sense because poverty rates are determined by income (but not directly in terms of median income).
(vii) (5 marks)There is no argument that they are highly correlated, but we are using them simply as controls to determine if there is price discrimination against blacks. In order to isolate the pure discrimination effect, we need to control for as many measures of income as we can; including both variables makes sense.

Problem C4.1

(i) (5 marks) Holding other factors fixed,
$\triangle \operatorname{vote} A=\beta_{1} \triangle \log (\operatorname{expend} A)=\left(\beta_{1} / 100\right)[100 \triangle \log ($ expend $A)] \approx\left(\beta_{1} / 100\right)(\% \triangle \operatorname{expend} A)$
(ii) (5 marks) The null hypothesis is $H_{0}: \beta_{2}=-\beta_{1}$, which means a $z \%$ increase in expenditure by A and a $z \%$ increase in expenditure by B leaves voteA unchanged. We can equivalently write $H_{0}: \beta_{1}+\beta_{2}=0$.
(iii) (10 marks)
. reg voteA lexpendA lexpendB prtystrA

Source I	SS	df	MS		Number of obs $=$	173
					$\mathrm{F}($ 3, 169) $=$	215.23
Model \|	38405.1089	3	12801.703		Prob > F =	0.0000
Residual \|	10052.1396	169	59.4801161		R -squared $=$	0.7926
					Adj R-squared $=$	0.7889
Total I	48457.2486	172	281.728189		Root MSE =	7.7123
voteA \|	Coef.	Std.	Err. \quad t	$P>\|t\|$	[95\% Conf. In	terval]

lexpendA \|	6.083316	.38215	15.92	0.000	5.328914	6.837719
lexpendB \|	-6.615417	.3788203	-17.46	0.000	-7.363247	-5.867588
prtystrA \|	.1519574	.0620181	2.45	0.015	.0295274	.2743873
_cons \|	45.07893	3.926305	11.48	0.000	37.32801	52.82985

The estimated equation (with standard errors in parentheses below estimates) is

$$
\begin{gathered}
\widehat{\text { vote } A}=45.08(3.93)+6.083(0.382) \log (\text { expend } A)-6.615(0.379) \log (\text { expend } B)+.152(0.062) \text { prtystr } A \\
n=173, R^{2}=.793
\end{gathered}
$$

The coefficient on $\log (\operatorname{expend} A)$ is very significant $(\mathrm{t}$ statistic $\approx 15.92)$, as is the coefficient on $\log (\operatorname{expendB})$ (t statistic ≈-17.45). The estimates imply that a 10% ceteris paribus increase in spending by candidate A increases the predicted share of the vote going to A by about .61 percentage points. [Recall that, holding other factors fixed, $\triangle \widehat{v o t e A} \approx(6.083 / 100) \% \triangle \log ($ expend $A)$ Similarly, a 10% ceteris paribus increase in spending by B reduces by about .66 percentage points. These effects certainly cannot be ignored. ..voteA While the coefficients on $\log ($ expendA $)$ and $\log ($ expendB $)$ are of similar magnitudes (and opposite in sign, as we expect), we do not have the standard error of $\hat{\beta}_{1}+\hat{\beta}_{2}$, which is what we would need to test the hypothesis from part (ii).
(iv) (5 marks)
. test lexpend $A=-1$ expendB
(1) lexpendA + lexpendB $=0$
$F(1,169)=1.00$
Prob > F = 0.3196
or, equivalently,
. gen $\operatorname{diffBA}=$ lexpendB- lexpendA
. reg voteA lexpendA diffBA prtystrA


```
Number of obs = 173
F( 3, 169) = 215.23
```

Model \| Residual	$\begin{aligned} & 38405.1089 \\ & 10052.1397 \end{aligned}$	312801.703			Prob > F R-squared Adj R-squared Root MSE	$\begin{aligned} & =0.0000 \\ & =0.7926 \\ & =0.7889 \\ & =7.7123 \end{aligned}$
Total \|	48457.2486	172281	728189			
voteA	Coef .	Std. Err	t	$P>\|t\|$	[95\% Conf.	Interval]
lexpendA \|	-. 532101	. 5330858	-1.00	0.320	-1.584466	. 520264
diffBA \|	-6.615417	. 3788203	-17.46	0.000	-7.363246	-5.867588
prtystrA \|	. 1519574	. 0620181	2.45	0.015	. 0295274	. 2743873
_cons \|	45.07893	3.926305	11.48	0.000	37.32801	52.82985

Write $\theta_{1}=\beta_{1}+\beta_{2}$, or $\beta_{1}=\theta_{1}-\beta 2$. Plugging this into the original equation, and rearranging, gives

$$
\widehat{v o t e A}=\beta_{0}+\theta_{1} \log (\operatorname{expend} A)+\beta_{2}[\log (\text { expend } B)-\log (\text { expend } A)]+\beta_{3} \text { prtystr } A+u
$$

When we estimate this equation we obtain $\hat{\theta_{1}} \approx-.532$ and $s e\left(\hat{\theta_{1}}\right) \approx .533$. The t statistic for the hypothesis in part (ii) is $-.532 / .533 \approx-1$. Therefore, we fail to reject $H_{0}: \beta_{2}=-\beta_{1}$.

C4.3(i) (5 marks) The estimated model is
. regress lprice sqrft bdrms

Source \|	SS	df MS		Number of obs $=88$		
					F (2, 85)	60.73
Model \|	4.71671468	22.	. 35835734		Prob > F	$=0.0000$
Residual \|	3.30088884	85.038833986			R -squared	$=0.5883$
					Adj R-squared	0.5786
Total \|	8.01760352	87.092156362			Root MSE	$=.19706$
lprice \|	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf. Interval]	
sqrft \|	. 0003794	. 0000432	8.78	0.000	. 0002935	. 0004654
bdrms \|	. 0288844	. 0296433	0.97	0.333	-. 0300543	. 0878232
_cons \|	4.766027	. 0970445	49.11	0.000	4.573077	4.958978

$$
\widehat{l o g(\text { price })}=4.766(0.10)+.000379(.000043) s q r f t+.0289(.0296) b d r m s
$$

$$
n=88, R^{2}=.588
$$

Therefore, $\hat{\theta_{1}}=150(.000379)+.0289=.858$, which means that an additional 150 square foot bedroom increases the predicted price by about 8.6%.
(ii) $\left(5\right.$ marks) $\beta_{2}=\theta_{1}-150 \beta_{1}$, and so $\log ($ price $)=\beta_{0}+\beta_{1} \operatorname{sqrft}+\left(\theta_{1}-\right.$ $\left.150 \beta_{1}\right) b d r m s+u=\beta_{0}+\beta_{1}(s q r f t-150 b d r m s)+\theta_{1} b d r m s+u$.
(iii) (5 marks) From part (ii) we run the regression

```
. gen sqrft150=sqrft-150*bdrms
. regress lprice sqrft150 bdrms
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Source | & \multirow[t]{2}{*}{SS} & \multicolumn{2}{|l|}{df MS} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Number of obs \(=88\)} \\
\hline & & & & & 85) & 60.73 \\
\hline Model & 4.71671468 & 22.3 & . 35835734 & & Prob > F & \(=0.0000\) \\
\hline Residual | & 3.30088884 & \multicolumn{2}{|l|}{85.038833986} & & R-squared & \(=0.5883\) \\
\hline & & & & & Adj R-squared & 0.5786 \\
\hline Total | & 8.01760352 & \multicolumn{2}{|l|}{87.092156362} & & Root MSE & \(=.19706\) \\
\hline lprice | & Coef. & Std. Err. & t & \(P>|t|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline sqrft150 | & . 0003794 & . 0000432 & 8.78 & 0.000 & . 0002935 & . 0004654 \\
\hline bdrms | & . 0858013 & . 0267675 & 3.21 & 0.002 & . 0325804 & . 1390223 \\
\hline _cons | & 4.766027 & . 0970445 & 49.11 & 0.000 & 4.573077 & 4.958978 \\
\hline
\end{tabular}
```

Really, $\hat{\theta_{1}}=.0858$; no we also get $s e\left(\hat{\theta_{1}}\right)=.0268$. The 95% confidence interval reported by my software package is .0326 to .1390 (or about 3.3% to 13.9%).

Problem C4.5

(i) (5 marks) If we drop rbisyr the estimated equation becomes

$$
\begin{aligned}
& \log \widehat{(\text { salary })}=\begin{array}{c}
11.02 \\
(0.27)
\end{array}+\begin{array}{c}
.0677 \\
(.0121)
\end{array} \text { years }+ \\
&+\begin{array}{cc}
.0158 & \text { gamesyr } \\
& (.0014
\end{array} \text { bavg }+\begin{array}{c}
.0359
\end{array} \\
& \text { hrunsyr } \\
& n=353, R^{2}=.625 .
\end{aligned}
$$

Now hrunsyr is very statistically significant (t-statistic $\approx .4 .99$), and its coefficient has increased by about two and one-half times.
(ii) (5 marks) The equation with runsyr, fldperc, and sbasesyr added is

$$
\begin{aligned}
& n=353, R^{2}=.639 \text {. }
\end{aligned}
$$

Of the three additional independent variables, only runsyr is statistically significant $(t$-statistic $=.0174 / .0051 \approx 3.41)$. The estimate implies that one more run per year, other factors fixed, increases predicted salary by about 1.74%, a substantial increase. The stolen bases variable even has the "wrong" sign with a t-statistic of about -1.23 , while fldperc has a t-statistic of only .5. Most major league baseball players are pretty good fielders; in fact, the smallest fldperc is 800 (which means .800). With relatively little variation in fldperc, it is perhaps not surprising that its effect is hard to estimate.
(iii) (5 marks) From their t-statistics, bavg, fldperc, and sbasesyr are individually insignificant. The F-statistic for their joint significance (with 3 and $345 d f$) is about .69 with p-value $\approx .56$. Therefore, these variables are jointly very insignificant.

Problem C4.9

(i) (5 marks) The results from the OLS regression, with standard errors in parentheses, are

$$
\begin{gathered}
\widehat{\log (\widehat{p s o d} a)=} \begin{array}{c}
-1.46 \\
(0.29)
\end{array}+\underset{(.031)}{.073} \text { prpblck }+\underset{(.027)}{.137} \quad \log (\text { income }) \quad \begin{array}{l}
+.380 \\
(.133)
\end{array} \\
n=401 R^{2}=.087
\end{gathered}
$$

The p-value for testing $H_{0}: \beta_{1}=0$ against the two-sided alternative is about .018 , so that we reject H_{0} at the 5% level but not at the 1% level.
(ii) (5 marks) The correlation is about -.84, indicating a strong degree of multicollinearity. Yet each coefficient is very statistically significant: the t statistic for $\hat{\beta}_{l} o g$ (income) is about 5.1 and that for $\hat{\beta}_{p} r p p o v$ is about 2.86 (two-sided p-value $=.004$).
(iii) (5 marks) The OLS regression results when \log (hseval) is added are

$$
\begin{aligned}
& n=401 R^{2}=.184 .
\end{aligned}
$$

The coefficient on $\log (h s e v a l)$ is an elasticity: a one percent increase in housing value, holding the other variables fixed, increases the predicted price by about .12 percent. The two-sided p-value is zero to three decimal places.
(iv) (5 marks) Adding \log (hseval) makes \log (income) and prppov individually insignificant (at even the 15% significance level against a two-sided alternative for \log (income), and prppov is does not have a t statistic even close to one in absolute value). Nevertheless, they are jointly significant at the 5% level because the outcome of the $F_{2,396}$ statistic is about 3.52 with p-value $=.030$. All of the control variables $\log ($ income $)$, prppov, and $\log ($ hseval $)$ - are highly correlated, so it is not surprising that some are individually insignificant.
(v) (marks) Because the regression in (iii) contains the most controls, $\log ($ hseval $)$ is individually significant, and \log (income) and prppov are jointly significant, (iii) seems the most reliable. It holds fixed three measure of income and affluence. Therefore, a reasonable estimate is that if the proportion of blacks increases by .10, psoda is estimated to increase by 1%, other factors held fixed.

