BOSTON COLLEGE

Department of Economics
EC 22802 Econometric Methods
Fall 2009, Prof. Baum, Ms. Phillips (tutor), Ms. Pumphrey (grader)
Problem Set 3
Due at classtime, Tuesday 13 Oct 2009

C3.1

(i) (2 pts.) Probably $\beta_{2}>0$, as more income typically means better nutrition for the mother and better prenatal care.
(ii) (4 pts.) Yes, they are likely correlated and an argument can be made for both positive or negative correlation. On the one hand, an increase in income generally increases the consumption of a good, and cigs and faminc could be positively correlated. On the other hand, family incomes are also higher for families with more education, and more education and cigarette smoking tend to be negatively correlated. The sample correlation between cigs and faminc is about -0.173 , indicating a negative correlation.
(iii) (4 pts.)

. regress bwght cigs faminc

For the regression without faminc:
bwght $=120.3839-.601789$ cigs, $\mathrm{n}=694, R^{2}=0.0353$
For the regression with faminc:
bwght $=118.1664-.5632$ cigs +.0732 faminc, $\mathrm{n}=694, R^{2}=0.0395$
The effect of cigarette smoking is slightly smaller when faminc is added to the regression, but the difference is not great. This is due to the fact that cigs and faminc are not very correlated, and the coefficient on faminc is practically small.(The variable faminc is measured in thousands, so 10000 more dollars in 1988 inome increases predicted weight by only 0.93 ounces.)

C3.2

(i) (2 pts.)


```
sqrft | .1284362 .0138245 9.29 0.000 . 1009495 . }155922
bdrms | 15.19819 9.483517 1.60 0.113 1. llllll
_cons | -19.315 31.04662 
```

The estimated equation is

$$
\begin{gathered}
\widehat{\text { price }}=-19.32+.128 \text { sqrft }+15.20 b d r m s \\
n=88, R^{2}=.632
\end{gathered}
$$

(ii) (2 pts.) Holding square footage constant, $\triangle \widehat{p r i c e}=15.20 \triangle b d r m s$, and so price increases by 15.20 , which means $\$ 15,200$.
(iii) (2 pts.) Now $\triangle \widehat{\text { price }}=.128 \triangle$ sqrft $+15.20 \triangle b d r m s=.128(140)+$ $15.20=33.12$,or $\$ 33,120$. Because the size of the house is increasing, this is a much larger effect than in(ii).
(iv) (2 pts.) About 63.2% from R^{2}.
(v) (2 pts.) The predicted price is $-19.32+.128(2,438)+15.20(4)=$ 353.544 , or $\$ 353,544$.
(vi) (2 pts.) From part (v), the estimated value of the home based only on square footage and number of bedrooms is $\$ 353,544$. The actual selling price was $\$ 300,000$, which suggests the buyer underpaid by some margin. But, of course, there are many other features of a house (some that we cannot even measure) that affect price, and we have not controlled for these.

C3.4

(i) (2 pts.) The minimum, maximum, and average values for these three variables are given in the table below. Use the command "summarize atndrte priGPA ACT".

Variable	Average	Minimum	Maximum
atndrte	81.71	6.25	100
priGPA	2.59	0.86	3.93
$A C T$	22.51	13	32

(ii) (4 pts.)
. regress atndrte priGPA ACT

Source \|	SS	df MS			Number of obs $=680$	
					F (2, 677)	$=138.65$
Model \|	57336.7612	2286	8.3806		Prob > F	$=0.0000$
Residual \|	139980.564	677206	765974		R -squared	$=0.2906$
					Adj R-squared	$=0.2885$
Total \|	197317.325	67929	. 59989		Root MSE	$=14.379$
atndrte \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
priGPA \|	17.26059	1.083103	15.94	0.000	15.13395	19.38724
ACT	-1.716553	. 169012	-10.16	0.000	-2.048404	-1.384702
_cons \|	75.7004	3.884108	19.49	0.000	68.07406	83.32675

The estimated equation is

$$
\begin{gathered}
\widehat{\text { atndrte }=} 75.70+17.26 \text { priGPA-1.72ACT } \\
n=680, R^{2}=0.291
\end{gathered}
$$

The intercept means that, for a student whose prior GPA is zero and ACT score is zero, the predicted attendance rate is 75.7%. But this is clearly not an interesting segment of the population. (In fact, there are no students in the college population with $\operatorname{priGPA}=0$ and $A C T=0$, or with values even close to zero.)
(iii) (2 pts)The coefficient on priGPA means that, if a students prior GPA is one point higher (say, from 2.0 to 3.0), the attendance rate is about 17.3 percentage points higher. This holds $A C T$ fixed. The negative coefficient on $A C T$ is, perhaps initially a bit surprising. Five more points on the $A C T$ is predicted to lower attendance by 8.6 percentage points at a given level of priGPA. As priGPA measures performance in college (and, at least partially, could reflect, past attendance rates), while $A C T$ is a measure of potential in college, it appears that students that had more promise (which could mean more innate ability) think they can get by with missing lectures.
(iv) (2 pts)We have atndrte $=75.70+17.267(3.65)-1.72(20) \approx 104.3$. Of course, a student cannot have higher than a 100% attendance rate. Getting predictions like this is always possible when using regression methods for dependent variables with natural upper or lower bounds. In practice, we would predict a 100% attendance rate for this student. (In fact, this student had an actual attendance rate of 87.5%.)
(v) (2 pts) The difference in predicted attendance rates for A and B is $17.26(3.1-2.1)-(21-26)=25.86$.

C3.8
(i) (2 pts.)
. summarize prpblck income

Variable	Obs	Mean	Std. Dev.	Min	Max
prpblck	409	. 1134864	. 1824165	0	. 9816579
income	409	47053.78	13179.29	15919	136529

The average of prpblck is .113 with standard deviation .182 ; the average of income is $47,053.78$ with standard deviation 13,179.29. It is evident that prpblck is a proportion and that income is measured in dollars.
(ii) $(2 \mathrm{pts})$

The results from the OLS regression are

$$
\begin{gathered}
\widehat{p s o d} a=.956+.115 \text { prpblck }+.0000016 \text { income } \\
n=401, R^{2}=.064
\end{gathered}
$$

If say prpblck increases by .10 (ten percentage point), the price of soda is estimated to increase by .0115 dollars, or about 1.2 cents. While this does not seem large, there are communities with no black population and others that are almost all black, in which case the difference in psoda is estimated to be almost 11.5 cents.
(iii) (2 pts.)

Source \|	SS	df	MS		Number of obs $=401$	
					F (1, 399)	$=7.34$
Model \|	. 057010466	1.05	010466		Prob > F	$=0.0070$
Residual \|	3.09700668	399.00	761922		R-squared	$=0.0181$
					Adj R-squared	$=0.0156$
Total \|	3.15401715	400.00	885043		Root MSE	$=.0881$
psoda I	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
prpblck \|	. 0649269	. 023957	2.71	0.007	. 0178292	. 1120245
_cons I	1.037399	. 0051905	199.87	0.000	1.027195	1.047603

The simple regression estimate on prpblck is .065 , so the simple regression estimate is actually lower. This is because prpblck and income are negatively correlated (-.43) and income has a positive coefficient in the multiple regression. You can see the negative correlation by using the command "corr prpblck income".
(iv) (2 pts.)
. regress lpsoda prpblck lincome

Source	SS	df	MS
Model	. 196020672	2	. 098010336
Residual	2.68272938	398	. 006740526
Total	2.87875005	400	. 007196875

Number of obs	$=$	401
F $2, \quad 398)$	$=14.54$	
Prob $>$ F	$=$	0.0000
R-squared	$=0.0681$	
Adj R-squared	$=0.0634$	
Root MSE	$=.0821$	

lpsoda \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con	Interval]
prpblck \|	. 1215803	. 0257457	4.72	0.000	. 0709657	. 1721948
lincome \|	. 0765114	. 0165969	4.61	0.000	. 0438829	. 1091399
_cons \|	-. 793768	. 1794337	-4.42	0.000	-1.146524	-. 4410117

$$
\begin{gathered}
\log (\widehat{p s o d} a)=-.794+.122 \text { prpblck }+.077 \text { lincome } \\
n=401, R^{2}=.068
\end{gathered}
$$

If prpblck increases by $.20, \log$ (psoda) is estimated to increase by $.20(.122)=.0244$, or about 2.44 percent.
(v) (2 pts.)
. regress lpsoda prpblck lincome prppov

Source \|	SS	df MS				Number of obs $=401$		
						F (3, 397)	$=$	12.60
Model \|	. 250340622	3	. 083	6874		Prob > F	$=$	0.0000
Residual \|	2.62840943	397	. 006	0679		R -squared		0.0870
						Adj R-squared		0.0801
Total \|	2.87875005	400	. 007	6875		Root MSE	$=$. 08137
lpsoda \|	Coef.	Std.	Err.	t	$P>\|t\|$	[95\% Conf.	In	terval]
prpblck \|	. 0728072	. 0306	756	2.37	0.018	. 0125003		. 1331141
lincome \|	. 1369553	. 0267	554	5.12	0.000	. 0843552		. 1895553
prppov \|	. 38036	. 1327	903	2.86	0.004	. 1192999		. 6414201
_cons I	-1.463333	. 2937	111	-4.98	0.000	-2.040756		. 8859092

$\hat{\beta}_{\text {prpblck }}$ falls to about .073 when prppov is added to the regression.
(vi) (2 pts.)

```
. corr lincome prppov
(obs=409)
```

	lincome	prppov
lincome	1.0000	
prppov	-0.8385	1.0000

The correlation is about -.84, which makes sense because poverty rates are determined by income (but not directly in terms of median income).
(vii) (2 pts.) There is no argument that they are highly correlated, but we are using them simply as controls to determine if there is price discrimination against blacks. In order to isolate the pure discrimination effect, we need to control for as many measures of income as we can; therefore, including both variables makes sense.

4.1

(i) (2 pts.) Heteroskedasticity generally causes the t statistics not to have a t distribution under H_{0}. Homoskedasticity is one of the CLM assumptions.
(ii) (2 pts.) The CLM assumptions contain no mention of the sample correlations among independent variables, except to rule out the case where the correlation is one. If two independent variables are perfectly correlated, then the X matrix is not of full rank and we have a problem. Otherwise, partial correlations are acceptable (and likely). (iii) (2 pts.) An important omitted variable violates Assumption MLR. 4 (zero conditional mean), so then the t statistics don't have a t distribution under H_{0}. For example, suppose we are trying to predict consumption of cigarettes. On the right hand side, we include income but we do not include education. Since income and education are almost surely positively correlated, then the errors would not have zero conditional mean. This would lead to biased estimates of β.
(i) (4 pts.) Holding profmarg fixed, \triangle rdintents $=.321 \triangle \log ($ sales $)=$ $(.321 / 100)[100 \triangle \log ($ sales $)] \approx .00321(\% \triangle$ sales $)$. Therefore, if $\% \triangle$ sales $=$ $10, \triangle$ rdintens $\approx .032$, or only about $3 / 100$ of a percentage point. For such a large percentage increase in sales, this seems like a very small effect.
(ii) (4 pts.) $H_{0}: \beta_{1}=0$ versus $H_{1}: \beta_{1}>0$, where β_{1} is the population slope on $\log ($ sales $)$. The t statistic is $.321 / .216 \approx 1.486$. The 5% critical value for a one-tailed test, with $d f=32-3=29$, is obtained from Table G. 2 as 1.699; so we cannot reject H_{0} at the 5% level. But the 10% critical value is 1.311; since the t statistic is above this value, we reject H_{0} in favor of H_{1} at the 10% level.
(iii) (2 pts.) With an increase of profit margin by 1 percentage point, expenditures on $\mathrm{R} \& \mathrm{D}$ rise by 0.05 percentage points. Economically that is quite significant, as given a 10% increase in profit margin then they will increase expenditures on $\mathrm{R} \& \mathrm{D}$ by 0.5 percentage point.
(iv) 2 pts.) Not really. Its t statistic is only $0.05 / 0.046=1.087$, so we are not able to reject at even the 10% level.

4.5

(i) $(2 \mathrm{pts}) ..412 \pm 1.96(.094)$, or about $[.228, .596]$.
(ii) (2 pts.) No, because the value .4 is well inside the 95% CI.
(iii)(2 pts.) Yes, because 1 is well outside the 95% CI.

C4.1

(i) (2 pts.) Holding other factors fixed,
$\triangle \operatorname{vote} A=\beta_{1} \triangle \log (\operatorname{expend} A)=\left(\beta_{1} / 100\right)[100 \triangle \log (\operatorname{expend} A)] \approx\left(\beta_{1} / 100\right)(\% \triangle \operatorname{expend} A)$
So a . 01 increase in expenditure will result in a $\left(\beta_{1} / 100\right) *(100 * .01)=.01 \beta_{1}$ change in the vote for A .
(ii) (2 pts.) The null hypothesis is $H_{0}: \beta_{2}=-\beta_{1}$, which means a $z \%$ increase in expenditure by A and a $z \%$ increase in expenditure by B leaves voteA unchanged. We can equivalently write $H_{0}: \beta_{1}+\beta_{2}=0$.
(iii) (4 pts.)

Number of obs $=173$
$F(3,169)=215.23$
Prob $>$ F $=0.0000$
R-squared $=0.7926$
Adj R-squared $=0.7889$
Root MSE $=7.7123$

voteA \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
lexpendA \|	6.083316	. 38215	15.92	0.000	5.328914	6.837719
lexpendB \|	-6.615417	. 3788203	-17.46	0.000	-7.363247	-5.867588
prtystrA \|	. 1519574	. 0620181	2.45	0.015	. 0295274	. 2743873
_cons \|	45.07893	3.926305	11.48	0.000	37.32801	52.82985

The estimated equation (with standard errors in parentheses below estimates) is

$$
\begin{gathered}
\widehat{\operatorname{vote} A}=45.08(3.93)+6.08(0.38) \log (\text { expend } A)-6.62(0.39) \log (\text { expend } B)+.15(0.06) \text { prtystr } A \\
n=173, R^{2}=.793
\end{gathered}
$$

The coefficient on $\log (\operatorname{expend} A)$ is very significant (t statistic ≈ 15.92), as is the coefficient on $\log (\operatorname{expendB})$ (t statistic ≈-17.45). The estimates imply that a 10% ceteris paribus increase in spending by candidate A increases the predicted share of the vote going to A by about . 61 percentage points. [Recall that, holding other factors fixed, $\triangle v \widehat{o t e} A \approx(6.083 / 100) \% \triangle \log ($ expend $A)$ Similarly, a 10% ceteris paribus increase in spending by B reduces A's vote by about .66 percentage points. These effects certainly cannot be ignored. While the coefficients on $\log (\operatorname{expend} A)$ and $\log (\operatorname{expendB})$ are of similar magnitudes (and opposite in sign, as we expect), we do not have the standard error of $\hat{\beta}_{1}+\hat{\beta}_{2}$, which is what we would need to test the hypothesis from part (ii).
(iv) (2 pts.)
. test lexpendA=-lexpendB
(1) lexpendA + lexpendB $=0$
$F(1,169)=1.00$
Prob $>\mathrm{F}=0.3196$

So we fail to reject $\beta_{1}+\beta_{2}=0$.

C4.3

(i) (2 pts.) The estimated model is

Source I	SS	df MS			Number of obs	$=88$
					F (2, 85)	$=60.73$
Model \|	4.71671468	22.	2.35835734		Prob > F	$=0.0000$
Residual \|	3.30088884	85.03	. 038833986		R-squared	$=0.5883$
			$.092156362$		Adj R-squared	$=0.5786$
Total \|	8.01760352	87.0			Root MSE	$=.19706$
lprice \|	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf.	Interval]
sqrft \|	. 0003794	. 0000432	8.78	0.000	. 0002935	. 0004654
bdrms \|	. 0288844	. 0296433	0.97	0.333	-. 0300543	. 0878232
_cons I	4.766027	. 0970445	49.11	0.000	4.573077	4.958978

$$
\begin{gathered}
\log (\widehat{p r i c e})=4.766(0.10)+.000379(.000043) s q r f t+.0289(.0296) b d r m s \\
n=88, R^{2}=.588
\end{gathered}
$$

Therefore, $\hat{\theta_{1}}=150(.000379)+.0289=.858$, which means that an additional 150 square foot bedroom increases the predicted price by about 8.6%.
(ii) $(2$ pts. $) \beta_{2}=\theta_{1}-150 \beta_{1}$, and so $\log ($ price $)=\beta_{0}+\beta_{1} \operatorname{sqrft}+\left(\theta_{1}-\right.$ $\left.150 \beta_{1}\right) b d r m s+u=\beta_{0}+\beta_{1}(s q r f t-150 b d r m s)+\theta_{1} b d r m s+u$.
(iii) (2 pts.) From part (ii) we run the regression
. gen $\operatorname{sqrft150=sqrft-150*bdrms~}$
. regress lprice sqrft150 bdrms

Source	SS	df	MS	Number of obs $=$	88
				F(2, 85)	60.73
Model	4.71671468	2	2.35835734	Prob > F	0.0000
Residual	3.30088884	85	. 038833986	R-squared	0.5883
				Adj R-squared =	0.5786
Total	8.01760352	87	. 092156362	Root MSE =	. 19706

lprice	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf. Interval]	
sqrft150	. 0003794	. 0000432	8.78	0.000	. 0002935	. 0004654
bdrms	. 0858013	. 0267675	3.21	0.002	. 0325804	. 1390223
_cons	4.766027	. 0970445	49.11	0.000	4.573077	4.958978

Really, $\hat{\theta_{1}}=.0858$; note we also get $s e\left(\hat{\theta_{1}}\right)=.0268$. The 95% confidence interval is .0326 to .1390 (or about 3.3% to 13.9%).

