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Problem C7.10

(i) (10 pts) The estimated equation is

points = 4.76 + 1.28 exper− .072 exper2+ 2.31 guard+ 1.54 forward
(1.18) (.33) (.024) (1.00) (1.00)

n = 269, R2 = .091, R̄2 = .077

(ii) (5 pts) Including all three position dummy variables would be redun-
dant and would induce perfect collinearity, a violation of OLS assump-
tions. Each player falls into one of the three categories, and the overall
intercept is the intercept for centers. The coefficients on the other
positions are the points per game (PPG) relative to PPG of centers.

(iii) (5 pts) A guard is estimated to score about 2.3 points more per game,
holding experience fixed. The t statistic is 2.31, so the difference is
statistically different from zero at the 5% level, against a two-sided
alternative.

(iv) (5 pts) When marr is added to the regression, its coefficient is about
.584 (se=.740). Therefore, a married player is estimated to score just
over half a point more per game (experience and position held fixed),
but the estimate is not statistically different from zero (p-value=.43).
So, based on points per game, we cannot conclude married players are
more productive.

(v) (5 pts) Adding the terms marr · exper and marr · exper2 leads to
complicated signs on the three terms involving marr. The F test for
the joint significance, with 3 and 261 df, gives F= 1.44 and p-value=.23.
Therefore, there is not very strong evidence that marital status has any
partial effect on points scored, even at the 20 percent significance level.
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(vi) (5 pts) If in the regression from part (iv) we use assists as the dependent
variable, the coefficient on marr becomes .322 (se=.222). Therefore,
holding experience and position fixed, a married man has almost one-
third more assist per game. The p-value against a two-sided alternative
is about .15, which is stronger, but not overwhelming, evidence that
married men are more productive when it comes to assists.

Problem C8.2

(i) (10 pts) The estimated equation with both sets of standard errors
(heteroskedasticity-robust standard errors in brackets) is

price = −21.77 + .00207 lotsize+ .123 sqrft+ 13.85 bdrms
(29.48) (.00064) (.013) (9.01)
[37.13] [.00125] [.017] [8.48]

n = 88, R2 = .672

The robust standard error on lotsize is almost twice as large as the usual
standard error, making lotsize much less significant (the t statistic falls
from about 3.23 to 1.70). The t statistic on sqrft also falls, but it is
still very significant. The variable bdrms actually becomes somewhat
more significant, but it is still barely significant. The most important
change is in the significance of lotsize.

(ii) (10 pts) For the log-log model,

̂log(price) = −1.30 + .168 log(lotsize)+ .700 log(sqrft)+ .037 bdrms
(0.65) (.038) (.093) (.028)
[.78] [.041] [.103] [.030]

n = 54, R2 = .643

Here, the heteroskedasticity-robust error is always slightly greater than
the corresponding usual standard error, but the differences are rela-
tively small. In particular, log(lotsize) and log(sqrft) still have very
large t statistics, and the t statistic on bdrms is not significant at the
5% level against a one-sided alternative using either standard error.

2



(iii) (5 pts) As we discussed in Section 6.2, using the logarithmic transforma-
tion of the dependent variable often mitigates, if not entirely eliminates,
heteroskedasticity. Taking log transformations allow you to interpret
the coefficients as elasticities which don’t depend on units. This is
certainly the case here, as no important conclusions in the model for
log(price) depend on the choice of the standard error. (We have also
transformed two of the independent variables to make the model of the
constant elasticity variety in lotsize and sqrft.

Problem C8.4

(i) (10 pts) The estimated equation is

voteA = 37.66 + .252 prtystrA+ 3.793 democA+ 5.779 log(expendA)
(4.74) (.071) (1.407) (.392)

− 6.238 log(expendB) +û
(.397)

n = 173, R2 = .801, R̄2 = .796.

You can convince yourself that regressing the ûi on all of the explana-
tory variables yields an R-squared of zero, although it might not be
exactly zero in your computer output due to rounding error. Remem-
ber, OLS works by choosing the estimates, β̂j, such that the residuals
are uncorrelated in the sample with each independent variable (and the
residuals have a zero sample average, too).

(ii) (5 pts) The Breusch-Pagan test entails regressing the û2
i on the inde-

pendent variables in part (i). The F -statistic for joint significant (with
4 and 168 df) is about 2.33 with p-value ≈ .058. Therefore, there is
some evidence of heteroskedasticity, but not quite at the 5 % level.
However, we can reject the null of homoskedasticity at the 10 percent
level.

(iii) (5 pts) Now we regress û2
i on v̂oteAi and (v̂oteAi)

2, where the v̂oteAi

are the OLS fitted values from part (i). The F -test, with 2 and 170
df , is about 2.79 with p-value ≈ .065. This is slightly less evidence
of heteroskedasticity than provided by the Breusch-Pagan test, but the
conclusion is very similar: not significant at the 5 % level but significant
at the 10 % level.
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Problem C9.3

(i) (5 pts) If the grants were awarded to firms based on firm or worker
characteristics, grant could easily be correlated with such factors that
affect productivity. In the simple regression model, these are contained
in u.

(ii) (5 pts) The simple regression estimates using the 1988 data are

̂log(scrap) = .409 + .057 grant
(.241) (.406)

n = 54, R2 = .0004.

The coefficient on grant is actually positive, but not statistically dif-
ferent from zero.

(iii) (10 pts) When we add log(scrap87) to the equation, we obtain

̂log(scrap88) = .021 − .254 grant88+ .831 log(scrap87)
(.089) (.147) (.044)

n = 54, R2 = .873,

where the year subscripts are for clarity. The coefficient on grant is
-.254 meaning that firms which received job training grants in 1988
had lower scrap rates in 1988. The t-statistic for H0 : βgrant = 0 is
−.254/.147 ≈ −1.73. We use the 5 % critical value for 40 df in Table
G.2: -1.68. Because t = −1.73 < −1.68, we reject H0 in favor of
H1 : βgrant < 0 at the 5 % level.

(iv) (5 pts) The t-statistic is (.831 − 1)/.044 ≈ −3.84, which is a strong
rejection of H0.

(v) (5 pts) With the heteroskedasticity-robust standard errors, the t-statistic
for grant88 is −.254/.142 ≈ −1.79, so the coefficient is even more signif-
icantly less than zero when we use the heteroskedasticity-robust stan-
dard error. The t-statistic for H0 : βlog(scrap87) = 1 is (.831−1)/.0735 ≈
−2.29, which is notably smaller than before, but it is still significant.
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Problem C9.4

(i) (10 pts) Adding DC to the regression in equation (9.37) gives

̂infmort) = 23.95 − .567 log(pcinc)− 2.74 log(physic)
(12.42) (1.641) (1.19)

+ .629 log(popul)+ 16.03 DC
(.191) (1.77)

n = 51, R2 = .691, R̄2 = .664.

The coefficient on DC means that even if there was a state that had
the same per capita income, per capita physicians, and population as
Washington D.C., we predict that D.C. has an infant mortality rate
that is about 16 deaths per 1000 live births higher. This is a very large
”D.C. effect.”

(ii) (10 pts) In the regression from part (i), the intercept and all slope
coefficients, along with their standard errors, are identical to those
in equation (9.38), which simply excludes D.C. [Of course, equation
(9.38) does not have DC in it, so we have nothing to compare with its
coefficient and standard error.] Therefore, for the purposes of obtaining
the effects and statistical significance of the other explanatory variables,
including a dummy variable for a single observation is identical to just
dropping that observation when doing the estimation. The R-squareds
and adjusted R-squareds from (9.38) and the regression in part (i)
are not the same. They are much larger when DC is included as an
explanatory variable because we are predicting the infant mortality rate
perfectly for D.C. You might want to confirm that the residual for the
observation corresponding to D.C. is identically zero.

Problem C9.8

(i) (5 pts) Use ”summarize stotal” to see that its mean is .0474 and its
standard deviation is .853.

(ii) (5 pts) Use ”regress stotal jc” to see that the 95% confidence interval
for jc includes zero, or use ”corr jc stotal” to see that jc explains only
1.24% of the variation in stotal. Running the same commands for univ,
we see that univ is positively statistically related to stotal with a p-val
of 0.00 and that univ can explain 43.46 % of the variation in stotal. So
only univ is statistically related to stotal.
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(iii) (5 pts) Adding stotal to the regression in equation (4.17) gives

̂log(wage) = 1.495 + .063 jc+ .069 univ+ .005 exper+ .049 stotal
(.021) (.0068) (.0026) (.0002) (.0068)

n = 6763, R2 = .228,

Then we can use ”test jc = univ” where the null is that β1 = β2. We
get an F-statistic with 1 and 6758 dfs and a p-val of .4205, so we fail
to reject the null. In section 4.4 the p-val was about .07 so we could
reject at the 10% level that the return to junior college was equal to
the return of four-year college.

(iv) (5 pts) We generate the variable stotal2 = stotal ∗ stotal and then
run the regression from part (iii). The coefficient estimates are nearly
identical for all of the variables as in part (iii) and the coefficient on
stotal2 has a p-val of .68, meaning it is pretty much insignificant. Thus,
we don’t seem to need it in the model. We also get a slightly lower
adjusted R2 which is also suggestive of the fact that adding the variable
seems unnecessary.

(v) (5 pts) We generate the interaction terms stotaljc = stotal ∗ jc and
stotaluniv = stotal∗univ then run the regression from part (iii) again.
Then we test the joint significance of the interaction terms using the
command ”test stotaljc stotaluniv” and get an F-statistic with 2 and
6756 dfs with a p-val of .1410, meaning these interaction terms are
jointly significant only at the 15 % level.

(vi) (5 pts) I would use the regression from part (iii) since we showed that
the quadratic and interaction terms were not jointly significant. You
could also use the variable totcoll instead of jc and univ since we showed
that we cannot reject that they are different.
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