BOSTON COLLEGE

Department of Economics
EC 22802 Econometric Methods
Fall 2009, Prof. Baum, Ms. Phillips (TA), Ms. Pumphrey (grader)
Problem Set 5
Due Tuesday 10 November 2009
Total Points Possible: 160

Problem C7.10

(i) (10 pts) The estimated equation is

$$
\begin{gathered}
\text { points }=\begin{array}{c}
4.76 \\
(1.18)
\end{array}+\underset{(.33)}{1.28} \text { exper }-\underset{(.024)}{.072} \text { exper }{ }^{2}+\underset{(1.00)}{2.31} \text { guard }+\underset{(1.00)}{1.54} \text { forward } \\
n=269, R^{2}=.091, \bar{R}^{2}=.077
\end{gathered}
$$

(ii) (5 pts) Including all three position dummy variables would be redundant and would induce perfect collinearity, a violation of OLS assumptions. Each player falls into one of the three categories, and the overall intercept is the intercept for centers. The coefficients on the other positions are the points per game (PPG) relative to PPG of centers.
(iii) (5 pts) A guard is estimated to score about 2.3 points more per game, holding experience fixed. The t statistic is 2.31 , so the difference is statistically different from zero at the 5% level, against a two-sided alternative.
(iv) (5 pts) When marr is added to the regression, its coefficient is about .584 ($\mathrm{se}=.740$). Therefore, a married player is estimated to score just over half a point more per game (experience and position held fixed), but the estimate is not statistically different from zero (p -value=. 43). So, based on points per game, we cannot conclude married players are more productive.
(v) (5 pts) Adding the terms marr \cdot exper and marr \cdot exper 2 leads to complicated signs on the three terms involving marr. The F test for the joint significance, with 3 and 261 df , gives $\mathrm{F}=1.44$ and p -value $=.23$. Therefore, there is not very strong evidence that marital status has any partial effect on points scored, even at the 20 percent significance level.
(vi) (5 pts) If in the regression from part (iv) we use assists as the dependent variable, the coefficient on marr becomes . 322 ($\mathrm{se}=.222$). Therefore, holding experience and position fixed, a married man has almost onethird more assist per game. The p-value against a two-sided alternative is about .15 , which is stronger, but not overwhelming, evidence that married men are more productive when it comes to assists.

Problem C8.2

(i) (10 pts) The estimated equation with both sets of standard errors (heteroskedasticity-robust standard errors in brackets) is

$$
\begin{gathered}
\text { price }=\begin{array}{c}
-21.77 \\
(29.48) \\
{[37.13]}
\end{array}+\begin{array}{ccccc}
.00207 & (.00064) & \text { lotsize }+ & (.123 & \text { sqrft }+ \\
(.013) & 13.85 & \text { bdrms } \\
& {[.017]} & (9.01)
\end{array} \\
n=88, R^{2}=.672
\end{gathered}
$$

The robust standard error on lotsize is almost twice as large as the usual standard error, making lotsize much less significant (the t statistic falls from about 3.23 to 1.70). The t statistic on sqrft also falls, but it is still very significant. The variable bdrms actually becomes somewhat more significant, but it is still barely significant. The most important change is in the significance of lotsize.
(ii) (10 pts) For the log-log model,

$$
\begin{aligned}
& n=54, R^{2}=.643
\end{aligned}
$$

Here, the heteroskedasticity-robust error is always slightly greater than the corresponding usual standard error, but the differences are relatively small. In particular, \log (lotsize) and $\log (s q r f t)$ still have very large t statistics, and the t statistic on bdrms is not significant at the 5% level against a one-sided alternative using either standard error.
(iii) (5 pts) As we discussed in Section 6.2, using the logarithmic transformation of the dependent variable often mitigates, if not entirely eliminates, heteroskedasticity. Taking log transformations allow you to interpret the coefficients as elasticities which don't depend on units. This is certainly the case here, as no important conclusions in the model for \log (price) depend on the choice of the standard error. (We have also transformed two of the independent variables to make the model of the constant elasticity variety in lotsize and sqrft.

Problem C8.4
(i) (10 pts) The estimated equation is

$$
\begin{align*}
& \text { vote } A=37.66+.252 \quad \text { prtystr } A+\quad 3.793 \quad \text { democ } A+\quad 5.779 \log (\text { expend } A) \tag{.071}\\
& -6.238 \log (\text { expend } B)+\hat{u} \tag{4.74}\\
& n=173, R^{2}=.801, \bar{R}^{2}=.796 .
\end{align*}
$$

You can convince yourself that regressing the \hat{u}_{i} on all of the explanatory variables yields an R-squared of zero, although it might not be exactly zero in your computer output due to rounding error. Remember, OLS works by choosing the estimates, $\hat{\beta}_{j}$, such that the residuals are uncorrelated in the sample with each independent variable (and the residuals have a zero sample average, too).
(ii) (5 pts) The Breusch-Pagan test entails regressing the \hat{u}_{i}^{2} on the independent variables in part (i). The F-statistic for joint significant (with 4 and $168 d f$) is about 2.33 with p-value $\approx .058$. Therefore, there is some evidence of heteroskedasticity, but not quite at the 5% level. However, we can reject the null of homoskedasticity at the 10 percent level.
(iii) (5 pts) Now we regress \hat{u}_{i}^{2} on $\widehat{v o t e A}_{i}$ and $\left.\widehat{v o t e A}_{i}\right)^{2}$, where the $\widehat{v o t e A}_{i}$ are the OLS fitted values from part (i). The F-test, with 2 and 170 $d f$, is about 2.79 with p-value $\approx .065$. This is slightly less evidence of heteroskedasticity than provided by the Breusch-Pagan test, but the conclusion is very similar: not significant at the 5% level but significant at the 10% level.

Problem C9.3

(i) (5 pts) If the grants were awarded to firms based on firm or worker characteristics, grant could easily be correlated with such factors that affect productivity. In the simple regression model, these are contained in u.
(ii) (5 pts) The simple regression estimates using the 1988 data are

$$
\begin{aligned}
\widehat{\log (\text { scrap })}= & \underset{(.241)}{.409}+\underset{(.406)}{.057} \text { grant } \\
n & =54, R^{2}=.0004
\end{aligned}
$$

The coefficient on grant is actually positive, but not statistically different from zero.
(iii) (10 pts) When we add $\log \left(\operatorname{scrap}_{87}\right)$ to the equation, we obtain

$$
\begin{gathered}
\left.\log \widehat{(s c r a p}_{88}\right)=\underset{(.089)}{.021}-\underset{(.147)}{.254} \text { grant }_{88}+\underset{(.044)}{.831} \log \left(\text { scrap }_{87}\right) \\
n=54, R^{2}=.873
\end{gathered}
$$

where the year subscripts are for clarity. The coefficient on grant is -. 254 meaning that firms which received job training grants in 1988 had lower scrap rates in 1988. The t-statistic for $H_{0}: \beta_{\text {grant }}=0$ is $-.254 / .147 \approx-1.73$. We use the 5% critical value for $40 d f$ in Table G.2: -1.68. Because $t=-1.73<-1.68$, we reject H_{0} in favor of $H_{1}: \beta_{\text {grant }}<0$ at the 5% level.
(iv) (5 pts) The t-statistic is $(.831-1) / .044 \approx-3.84$, which is a strong rejection of H_{0}.
(v) (5 pts) With the heteroskedasticity-robust standard errors, the t-statistic for grant $_{88}$ is $-.254 / .142 \approx-1.79$, so the coefficient is even more significantly less than zero when we use the heteroskedasticity-robust standard error. The t-statistic for $H_{0}: \beta_{\log \left(\text { scrap }_{87}\right)}=1$ is $(.831-1) / .0735 \approx$ -2.29 , which is notably smaller than before, but it is still significant.

Problem C9.4

(i) (10 pts) Adding DC to the regression in equation (9.37) gives

$$
\begin{gathered}
\text { infmort }=\begin{array}{ccccc}
23.95 & - & .567 & \log (\text { pcinc })- & 2.74 \\
(12.42) & & \log (\text { physic }) \\
& +\begin{array}{c}
.641) \\
.629
\end{array} \log (\text { popul })+ & 16.03 & D C \\
(.191)
\end{array} \\
n=51, R^{2}=.691, \bar{R}^{2}=.664 .
\end{gathered}
$$

The coefficient on DC means that even if there was a state that had the same per capita income, per capita physicians, and population as Washington D.C., we predict that D.C. has an infant mortality rate that is about 16 deaths per 1000 live births higher. This is a very large "D.C. effect."
(ii) (10 pts) In the regression from part (i), the intercept and all slope coefficients, along with their standard errors, are identical to those in equation (9.38), which simply excludes D.C. [Of course, equation (9.38) does not have $D C$ in it, so we have nothing to compare with its coefficient and standard error.] Therefore, for the purposes of obtaining the effects and statistical significance of the other explanatory variables, including a dummy variable for a single observation is identical to just dropping that observation when doing the estimation. The R-squareds and adjusted R-squareds from (9.38) and the regression in part (i) are not the same. They are much larger when $D C$ is included as an explanatory variable because we are predicting the infant mortality rate perfectly for D.C. You might want to confirm that the residual for the observation corresponding to D.C. is identically zero.

Problem C9.8

(i) (5 pts) Use "summarize stotal" to see that its mean is .0474 and its standard deviation is .853 .
(ii) (5 pts) Use "regress stotal jc" to see that the 95% confidence interval for $j c$ includes zero, or use "corr $j c$ stotal" to see that $j c$ explains only 1.24% of the variation in stotal. Running the same commands for univ, we see that univ is positively statistically related to stotal with a p-val of 0.00 and that univ can explain 43.46% of the variation in stotal. So only univ is statistically related to stotal.
(iii) (5 pts) Adding stotal to the regression in equation (4.17) gives

$$
\begin{gathered}
\widehat{\log (\text { wage })}=\begin{array}{c}
1.495 \\
(.021)
\end{array}+\underset{(.0068)}{.063} \quad j c+\underset{(.0026)}{.069} \text { univ+ } \underset{(.0002)}{.005} \text { exper }+\underset{(.0068)}{.049} \text { stotal } \\
n=6763, R^{2}=.228
\end{gathered}
$$

Then we can use "test $j c=$ univ" where the null is that $\beta_{1}=\beta_{2}$. We get an F-statistic with 1 and 6758 dfs and a p-val of .4205 , so we fail to reject the null. In section 4.4 the p-val was about .07 so we could reject at the 10% level that the return to junior college was equal to the return of four-year college.
(iv) (5 pts) We generate the variable stotal ${ }^{2}=$ stotal $*$ stotal and then run the regression from part (iii). The coefficient estimates are nearly identical for all of the variables as in part (iii) and the coefficient on $s^{s t o t a l}{ }^{2}$ has a p-val of .68 , meaning it is pretty much insignificant. Thus, we don't seem to need it in the model. We also get a slightly lower adjusted R^{2} which is also suggestive of the fact that adding the variable seems unnecessary.
(v) (5 pts) We generate the interaction terms stotaljc $=$ stotal $* j c$ and stotaluniv $=$ stotal $*$ univ then run the regression from part (iii) again. Then we test the joint significance of the interaction terms using the command "test stotaljc stotaluniv" and get an F-statistic with 2 and 6756 dfs with a p-val of .1410 , meaning these interaction terms are jointly significant only at the 15% level.
(vi) (5 pts) I would use the regression from part (iii) since we showed that the quadratic and interaction terms were not jointly significant. You could also use the variable totcoll instead of jc and univ since we showed that we cannot reject that they are different.

