
Solutions to Problem Set 5 (Due November 22)

EC 228 02, Fall 2010 Prof. Baum, Ms Hristakeva

Maximum number of points for Problem set 5 is: 220

Problem 7.3

(i) (5 points) The t statistic on hsize2 is over four in absolute value, so there is very strong
evidence that it belongs in the equation. We obtain this by finding the turnaround
point; this is the value of hsize that maximizes ŝat (other things fixed): 19.3/(22.19) ≈
4.41. Because hsize is measured in hundreds, the optimal size of graduating class is
about 441.

(ii) (5 points) This is given by the coefficient on female (since black = 0): nonblack females
have SAT scores about 45 points lower than nonblack males. The t statistic is about
10.51, so the difference is very statistically significant. (The very large sample size
certainly contributes to the statistical significance.)

(iii) (5 points) Because female = 0, the coefficient on black implies that a black male has
an estimated SAT score almost 170 points less than a comparable nonblack male. The
t statistic is over 13 in absolute value, so we easily reject the hypothesis that there is
no ceteris paribus difference.

(iv) (5 points) We plug in black = 1, female = 1 for black females and black = 0 and
female = 1 for nonblack females. The difference is therefore 169.81 + 62.31 = 107.50.
Because the estimate depends on two coefficients, we cannot construct a t statistic from
the information given. The easiest approach is to define dummy variables for three of
the four race/gender categories and choose nonblack females as the base group. We
can then obtain the t statistic we want as the coefficient on the black female dummy
variable.

Problem 7.4

(i) (5 points) The approximate difference is just the coefficient on utility times 100, or
28.3percent. The t statistic is .283/.099 ≈ 2.86, which is very statistically significant.

(ii) (5 points) 100[e(.283)1) ≈ 24.7, and so the estimate is somewhat smaller in magnitude.

1



(iii) (5 points) The proportionate difference is .181.158 = .023, or about 2.3 percent. One
equation that can be estimated to obtain the standard error of this difference is

log(salary) = β0 + β1 log(sales) + β2roe+ δ1consprod+ δ2utility + δ3trans+ u

where trans is a dummy variable for the transportation industry. Now, the base
group is finance, and so the coefficient δ1 directly measures the difference between the
consumer products and finance industries, and we can use the t statistic on consprod.

Problem C7.10

(i) ( p5ts) The estimated equation is

points = 4.76 + 1.28 exper− .072 exper2+ 2.31 guard+ 1.54 forward
(1.18) (.33) (.024) (1.00) (1.00)

n = 269, R2 = .091, R̄2 = .077

(ii) (5 pts) Including all three position dummy variables would be redundant and would
induce perfect collinearity, a violation of OLS assumptions. Each player falls into
one of the three categories, and the overall intercept is the intercept for centers. The
coefficients on the other positions are the points per game (PPG) relative to PPG of
centers.

(iii) (5 pts) A guard is estimated to score about 2.3 points more per game, holding experi-
ence fixed. The t statistic is 2.31, so the difference is statistically different from zero
at the 5% level, against a two-sided alternative.

(iv) (5 pts) When marr is added to the regression, its coefficient is about .584 (se=.740).
Therefore, a married player is estimated to score just over half a point more per game
(experience and position held fixed), but the estimate is not statistically different from
zero (p-value=.43). So, based on points per game, we cannot conclude married players
are more productive.

(v) (5 pts) Adding the terms marr · exper and marr · exper2 leads to complicated signs
on the three terms involving marr. The F test for the joint significance, with 3 and
261 df, gives F= 1.44 and p-value=.23. Therefore, there is not very strong evidence
that marital status has any partial effect on points scored, even at the 20 percent
significance level.

(vi) (5 pts) If in the regression from part (iv) we use assists as the dependent variable,
the coefficient on marr becomes .322 (se=.222). Therefore, holding experience and
position fixed, a married man has almost one-third more assist per game. The p-value
against a two-sided alternative is about .15, which is stronger, but not overwhelming,
evidence that married men are more productive when it comes to assists.

2



Problem C7.12

(i) (5 points.) For women, the fraction rated as having above average looks is about .33;
for men, it is .29. The proportion of women rated as having below average looks is
only .135; for men, it is even lower at about .117.

(ii) (5 points.) The difference is about .04, that is, the percent rated as having above
average looks is about four percentage points higher for women than men. A simple
way to test whether the difference is statistically significant is to run a simple regression
of abvavg on female and do a t test (which is asymptotically valid). The t statistic
is about 1.48 with two-sided p − value = .14. Therefore, there is not strong evidence
against the null that the population fractions are the same, but there is some evidence.

(iii) (10 points.) The regression for men is:

̂log(wage) = 1.884 + .199 belavg+ −0.044 abvavg
(0.024) (.060) (.042)

n = 824, R2 = .013

and the regression for women is

̂log(wage) = 1.309 + .138 belavg+ −0.034 abvavg
(0.034) (.076) (.055)

n = 436, R2 = .011

Using the standard approximation, a man with below average looks earns almost 20per-
cent less than a man of average looks, and a woman with below average looks earns
about 13.8 percent less than a woman with average looks. (The more accurate esti-
mates are about 18percent and 12.9 percent, respectively.) The null hypothesis H0:
β1 = 0 against H1: β1 < 0 means that the null is that people with below average looks
earn the same, on average, as people with average looks; the alternative is that people
with below average looks earn less than people with average looks (in the population).
The one-sided p-value for men is .0005 and for women it is .036. We reject H0 more
strongly for men because the estimate is larger in magnitude and the estimate has less
sampling variation (as measured by the standard error).

(iv) (5 points.) Women with above average looks are estimated to earn about 3.4 percent
more, on average, than women with average looks. But the one-sided p-value is .272,
and this provides very little evidence against H0: β2 = 0.

(v) (5 points) Given the number of added controls, with many of them very statistically
significant, the coefficients on the looks variables do not change by much. For men, the
coefficient on belavg becomes .143 (t = 2.80) and the coefficient on abvavg becomes
.001 (t = .03). For women, the changes in magnitude are similar: the coefficient on
belavg becomes .115 (t = 1.75) and the coefficient on abvavg becomes .058 (t = 1.18).
In both cases, the estimates on belavg move closer to zero but are still reasonably large.
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Problem C8.2

(i) (10 pts) The estimated equation with both sets of standard errors (heteroskedasticity-
robust standard errors in brackets) is

price = −21.77 + .00207 lotsize+ .123 sqrft+ 13.85 bdrms
(29.48) (.00064) (.013) (9.01)
[37.13] [.00125] [.017] [8.48]

n = 88, R2 = .672

The robust standard error on lotsize is almost twice as large as the usual standard
error, making lotsize much less significant (the t statistic falls from about 3.23 to
1.70). The t statistic on sqrft also falls, but it is still very significant. The variable
bdrms actually becomes somewhat more significant, but it is still barely significant.
The most important change is in the significance of lotsize.

(ii) (10 pts) For the log-log model,

̂log(price) = −1.30 + .168 log(lotsize)+ .700 log(sqrft)+ .037 bdrms
(0.65) (.038) (.093) (.028)
[.78] [.041] [.103] [.030]

n = 54, R2 = .643

Here, the heteroskedasticity-robust error is always slightly greater than the corre-
sponding usual standard error, but the differences are relatively small. In particular,
log(lotsize) and log(sqrft) still have very large t statistics, and the t statistic on bdrms
is not significant at the 5% level against a one-sided alternative using either standard
error.

(iii) (5 pts) As we discussed in Section 6.2, using the logarithmic transformation of the de-
pendent variable often mitigates, if not entirely eliminates, heteroskedasticity. Taking
log transformations allow you to interpret the coefficients as elasticities which don’t
depend on units. This is certainly the case here, as no important conclusions in the
model for log(price) depend on the choice of the standard error. (We have also trans-
formed two of the independent variables to make the model of the constant elasticity
variety in lotsize and sqrft.

Problem C8.4

(i) (10 pts) The estimated equation is

voteA = 37.66 + .252 prtystrA+ 3.793 democA+ 5.779 log(expendA)
(4.74) (.071) (1.407) (.392)

− 6.238 log(expendB) +û
(.397)
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n = 173, R2 = .801, R̄2 = .796.

You can convince yourself that regressing the ûi on all of the explanatory variables
yields an R-squared of zero, although it might not be exactly zero in your computer
output due to rounding error. Remember, OLS works by choosing the estimates, β̂j,
such that the residuals are uncorrelated in the sample with each independent variable
(and the residuals have a zero sample average, too).

(ii) (5 pts) The Breusch-Pagan test entails regressing the û2
i on the independent variables

in part (i). The F -statistic for joint significant (with 4 and 168 df) is about 2.33 with
p-value ≈ .058. Therefore, there is some evidence of heteroskedasticity, but not quite
at the 5 % level. However, we can reject the null of homoskedasticity at the 10 percent
level.

(iii) (5 pts) Now we regress û2
i on v̂oteAi and (v̂oteAi)

2, where the v̂oteAi are the OLS fitted
values from part (i). The F -test, with 2 and 170 df , is about 2.79 with p-value ≈ .065.
This is slightly less evidence of heteroskedasticity than provided by the Breusch-Pagan
test, but the conclusion is very similar: not significant at the 5 % level but significant
at the 10 % level.

Problem C9.3

(i) (5 pts) If the grants were awarded to firms based on firm or worker characteristics,
grant could easily be correlated with such factors that affect productivity. In the
simple regression model, these are contained in u.

(ii) (5 pts) The simple regression estimates using the 1988 data are

̂log(scrap) = .409 + .057 grant
(.241) (.406)

n = 54, R2 = .0004.

The coefficient on grant is actually positive, but not statistically different from zero.

(iii) (10 pts) When we add log(scrap87) to the equation, we obtain

̂log(scrap88) = .021 − .254 grant88+ .831 log(scrap87)
(.089) (.147) (.044)

n = 54, R2 = .873,

where the year subscripts are for clarity. The coefficient on grant is -.254 meaning that
firms which received job training grants in 1988 had lower scrap rates in 1988. The
t-statistic for H0 : βgrant = 0 is −.254/.147 ≈ −1.73. We use the 5 % critical value
for 40 df in Table G.2: -1.68. Because t = −1.73 < −1.68, we reject H0 in favor of
H1 : βgrant < 0 at the 5 % level.
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(iv) (5 pts) The t-statistic is (.831− 1)/.044 ≈ −3.84, which is a strong rejection of H0.

(v) (5 pts) With the heteroskedasticity-robust standard errors, the t-statistic for grant88 is
−.254/.142 ≈ −1.79, so the coefficient is even more significantly less than zero when we
use the heteroskedasticity-robust standard error. The t-statistic for H0 : βlog(scrap87) =
1 is (.831 − 1)/.0735 ≈ −2.29, which is notably smaller than before, but it is still
significant.

Problem C9.4

(i) (10 pts) Adding DC to the regression in equation (9.37) gives

̂infmort) = 23.95 − .567 log(pcinc)− 2.74 log(physic)
(12.42) (1.641) (1.19)

+ .629 log(popul)+ 16.03 DC
(.191) (1.77)

n = 51, R2 = .691, R̄2 = .664.

The coefficient on DC means that even if there was a state that had the same per
capita income, per capita physicians, and population as Washington D.C., we predict
that D.C. has an infant mortality rate that is about 16 deaths per 1000 live births
higher. This is a very large ”D.C. effect.”

(ii) (10 pts) In the regression from part (i), the intercept and all slope coefficients, along
with their standard errors, are identical to those in equation (9.38), which simply
excludes D.C. [Of course, equation (9.38) does not have DC in it, so we have nothing
to compare with its coefficient and standard error.] Therefore, for the purposes of
obtaining the effects and statistical significance of the other explanatory variables,
including a dummy variable for a single observation is identical to just dropping that
observation when doing the estimation. The R-squareds and adjusted R-squareds from
(9.38) and the regression in part (i) are not the same. They are much larger when DC
is included as an explanatory variable because we are predicting the infant mortality
rate perfectly for D.C. You might want to confirm that the residual for the observation
corresponding to D.C. is identically zero.

Problem C9.8

(i) (5 pts) Use ”summarize stotal” to see that its mean is .0474 and its standard deviation
is .853.
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(ii) (5 pts) Use ”regress stotal jc” to see that the 95% confidence interval for jc includes
zero, or use ”corr jc stotal” to see that jc explains only 1.24% of the variation in stotal.
Running the same commands for univ, we see that univ is positively statistically related
to stotal with a p-val of 0.00 and that univ can explain 43.46 % of the variation in
stotal. So only univ is statistically related to stotal.

(iii) (5 pts) Adding stotal to the regression in equation (4.17) gives

̂log(wage) = 1.495 + .063 jc+ .069 univ+ .005 exper+ .049 stotal
(.021) (.0068) (.0026) (.0002) (.0068)

n = 6763, R2 = .228,

Then we can use ”test jc = univ” where the null is that β1 = β2. We get an F-statistic
with 1 and 6758 dfs and a p-val of .4205, so we fail to reject the null. In section 4.4
the p-val was about .07 so we could reject at the 10% level that the return to junior
college was equal to the return of four-year college.

(iv) (5 pts) We generate the variable stotal2 = stotal ∗ stotal and then run the regression
from part (iii). The coefficient estimates are nearly identical for all of the variables
as in part (iii) and the coefficient on stotal2 has a p-val of .68, meaning it is pretty
much insignificant. Thus, we don’t seem to need it in the model. We also get a slightly
lower adjusted R2 which is also suggestive of the fact that adding the variable seems
unnecessary.

(v) (5 pts) We generate the interaction terms stotaljc = stotal ∗ jc and stotaluniv =
stotal ∗ univ then run the regression from part (iii) again. Then we test the joint
significance of the interaction terms using the command ”test stotaljc stotaluniv” and
get an F-statistic with 2 and 6756 dfs with a p-val of .1410, meaning these interaction
terms are jointly significant only at the 15 % level.

(vi) (5 pts) I would use the regression from part (iii) since we showed that the quadratic and
interaction terms were not jointly significant. You could also use the variable totcoll
instead of jc and univ since we showed that we cannot reject that they are different.
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