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Appendix C: Fundamentals of mathemati-

cal statistics

A short review of the principles of mathemati-

cal statistics (or, what you should have learned

in EC 151). Econometrics is concerned with

statistical inference: learning about the char-

acteristics of a population from a sample of the

population. The population is a well-defined

group of subjects–and it is important to de-

fine the population of interest. Are we trying

to study the unemployment rate of all labor

force participants, or only teenaged workers, or

only AHANA workers? Given a population, we

may define an economic model that contains

parameters of interest–coefficients, or elastic-

ities, which express the effects of changes in

one variable upon another.



Let Y be a random variable (r.v.) represent-
ing a population with probability density func-
tion (pdf) f(y; θ), with θ a scalar parameter.
We assume that we know f,but do not know
the value of θ. Let a random sample from the
population be (Y1, ..., YN) , with Yi being an in-
dependent random variable drawn from f(y; θ).
We speak of Yi being i.i.d. – independently and
identically distributed.

We often assume that random samples are
drawn from the Bernoulli distribution (for in-
stance, that if I pick a student randomly from
my class list, what is the probability that she
is female? That probability is γ, where γ% of
the students are female, so P (Yi = 1) = γ and
P (Yi = 0) = (1 − γ). For many other applica-
tions, we will assume that samples are drawn
from the Normal distribution. In that case,
the pdf is characterized by two parameters, µ
and σ2, expressing the mean and spread of the
distribution, respectively.



Finite sample properties of estimators

The finite sample properties (as opposed to

asymptotic, or large-sample properties) apply

to all sample sizes, large or small. These are

of great relevance when we are dealing with

samples of limited size, and unable to conduct

a survey to generate a larger sample. How

well will estimators perform in this context?

First we must distinguish between estimators

and estimates. An estimator is a rule, or al-

gorithm, that specifies how the sample infor-

mation should be manipulated in order to gen-

erate a numerical estimate. Estimators have

properties–they may be reliable in some sense

to be defined; they may be easy or difficult to

calculate; that difficulty may itself be a func-

tion of sample size. For instance, a test which

involves measuring the distances between ev-

ery observation of a variable involves an order

of calculations which grows more than linearly



with sample size. An estimator with which we
are all familiar is the sample average, or arith-
metic mean, of N numbers: add them up and
divide by N. That estimator has certain proper-
ties, and its application to a sample produces
an estimate. We will often call this a point
estimate–since it yields a single number–as
opposed to an interval estimate, which pro-
duces a range of values associated with a par-
ticular level of confidence. For instance, an
election poll may state that 55% are expected
to vote for candidate A, with a margin of error
of ±4%. If we trust those results, it is likely
that candidate A will win, with between 51%
and 59% of the vote. We are concerned with
the sampling distributions of estimators–that
is, how the estimates they generate will vary
when the estimator is applied to repeated sam-
ples.

What are the finite-sample properties which we
might be able to establish for a given estimator
and its sampling distribution?



First of all, we are concerned with unbiased-
ness. An estimator W of θ is said to be unbi-
ased if E(W ) = θ for all possible values of θ.
If an estimator is unbiased, then its probability
distribution has an expected value equal to the
population parameter it is estimating. Unbi-
asedness does not mean that a given estimate
is equal to θ, or even very close to θ; it means
that if we drew an infinite number of samples
from the population and averaged the W esti-
mates, we would obtain θ. An estimator that
is biased exhibits Bias(W ) = E(W ) − θ. The
magnitude of the bias will depend on the dis-
tribution of the Y and the function that trans-
forms Y into W , that is, the estimator. In
some cases we can demonstrate unbiasedness
(or show that bias=0) irregardless of the distri-
bution of Y ; for instance, consider the sample
average Ȳ , which is an unbiased estimate of
the population mean µ :
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Any hypothesis tests on the mean will require
an estimate of the variance, σ2, from a popu-
lation with mean µ. Since we do not know µ

(but must estimate it with Ȳ ), the estimate of
sample variance is defined as

S2 =
1

n− 1

n∑
i=1

(
Yi − Ȳ

)2
with one degree of freedom lost by the replace-
ment of the population statistic µ with its sam-
ple estimate Ȳ . This is an unbiased estimate of
the population variance, whereas the counter-
part with a divisor of n will be biased unless we



know µ. Of course, the degree of this bias will

depend on the difference between
(

n
n−1

)
and

unity, which disappears as n→∞.

Two difficulties with unbiasedness as a crite-

rion for an estimator: some quite reasonable

estimators are unavoidably biased, but useful;

and more seriously, many unbiased estimators

are quite poor. For instance, picking the first

value in a sample as an estimate of the popula-

tion mean, and discarding the remaining (n−1)

values, yields an unbiased estimator of µ, since

E(Y1) = µ; but this is a very imprecise estima-

tor.

What additional information do we need to

evaluate estimators? We are concerned with

the precision of the estimator as well as its

bias. An unbiased estimator with a smaller

sampling variance will dominate its counter-

part with a larger sampling variance: e.g. we



can demonstrate that the estimator that uses

only the first observation to estimate µ has a

much larger sampling variance than the sample

average, for nontrivial n. What is the sampling

variance of the sample average?
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so that the precision of the sample average de-

pends on the sample size, as well as the (un-

known) variance of the underlying distribution

of Y. Using the same logic, we can derive the



sampling variance of the “estimator” that uses

only the first observation of a sample as σ2.

Even for a sample of size 2, the sample mean

will be twice as precise.

This leads us to the concept of efficiency:

given two unbiased estimators of θ, an estima-

tor W1 is efficient relative to W2 when

V ar(W1) ≤ V ar(W2) ∀θ, with strict inequality

for at least one θ. A relatively efficient unbiased

estimator dominates its less efficient counter-

part. We can compare two estimators, even

if one or both is biased, by comparing mean

squared error (MSE),

MSE(W ) = E
[
(W − θ)2

]
. This expression can

be shown to equal the variance of the estima-

tor plus the square of the bias; thus, it equals

the variance for an unbiased estimator.



Large sample (asymptotic) properties of

estimators

We can compare estimators, and evaluate their

relative usefulness, by appealing to their large

sample properties–or asymptotic properties.

That is, how do they behave as sample size

goes to infinity? We see that the sample aver-

age has a sampling variance with limiting value

of zero as n → ∞. The first asymptotic prop-

erty is that of consistency. If W is an estimate

of θ based on a sample [Y1, ..., Yn] of size n, W

is said to be a consistent estimator of θ if, for

every ε > 0,

P (|Wn − θ| > ε)→ 0 as n→∞.

Intuitively, a consistent estimator becomes more

accurate as the sample size increases without

bound. If an estimator does not possess this

property, it is said to be inconsistent. In that



case, it does not matter how much data we

have; the “recipe” that tells us how to use the

data to estimate θ is flawed. If an estimator is

biased but its variance shrinks as n→∞, then

the estimator is consistent.

A consistent estimator has probability limit,

or plim, equal to the population parameter:

plim
(
Ȳ
)

= µ. Some mechanics of plims: let

θ be a parameter and g (·) a continuous func-

tion, so that γ = g(θ). Suppose plim(Wn) = θ,

and we devise an estimator of γ, Gn = g(Wn).

Then plim(Gn) = γ, or

plim g(Wn) = g (plim Wn) .

This allows us to establish the consistency of

estimators which can be shown to be transfor-

mations of other consistent estimators. For in-

stance, we can demonstrate that the estimator

given above of the population variance is not

only unbiased but consistent. The standard



deviation is the square root of the variance:

a nonlinear function, continuous for positive

arguments. Thus the standard deviation S is

a consistent estimator of the population stan-

dard deviation. Some additional properties of

plims, if plim(Tn) = α and plim(Un) = β :

plim (Tn + Un) = α+ β

plim (TnUn) = αβ

plim (Tn/Un) = α/β, β 6= 0.

Consistency is a property of point estimators:

the distribution of the estimator collapses around

the population parameter in the limit, but that

says nothing about the shape of the distribu-

tion for a given sample size. To work with in-

terval estimators and hypothesis tests, we need

a way to approximate the distribution of the es-

timators. Most estimators used in economet-

rics have distributions that are reasonably ap-

proximated by the Normal distribution for large



samples, leading to the concept of asymptotic

normality:

P (Zn ≤ z)→ Φ (z) as n→∞

where Φ (·) is the standard normal cumulative

distribution function (cdf). We will often say

“Zn˜N(0,1)” or “Zn is asy N.” This relates to

one form of the central limit theorem (CLT).

If [Y1, ...Yn] is a random sample with mean µ

and variance σ2,

Zn =
Ȳn − µ
σ/
√
n

has an asymptotic standard normal distribu-

tion. Regardless of the population distribu-

tion of Y, this standardized version of Y will

be asy N, and the entire distribution of Z will

become arbitrarily close to the standard nor-

mal as n → ∞. Since many of the estimators

we will derive in econometrics can be viewed as

sample averages, the law of large numbers and

the central limit theorem can be combined to



show that these estimators will be asy N. In-

deed, the above estimator will be asy N even

if we replace σ with a consistent estimator of

that parameter, S.

General approaches to parameter estima-

tion

What general strategies will provide us with es-

timators with desirable properties such as un-

biasedness, consistency and efficiency? One of

the most fundamental strategies for estimation

is the method of moments, in which we re-

place population moments with their sample

counterparts. We have seen this above, where

a consistent estimator of sample variance is

defined by replacing the unknown population

µ with a consistent estimate thereof, Ȳ .

A second widely employed strategy is the prin-

ciple of maximum likelihood, where we choose



an estimator of the population parameter θ by

finding the value that maximizes the likelihood

of observing the sample data. We will not fo-

cus on maximum likelihood estimators in this

course, but we must note their importance in

more advanced econometrics.

Most of our work in this course is based on the

least squares principle: that to find an esti-

mate of the population parameter, we should

solve a minimization problem. We can readily

show that the sample average is a method of

moments estimator (and is in fact a maximum

likelihood estimator as well). We demonstrate

now that the sample average is a least squares

estimator:

min
m

n∑
i=1

(Yi −m)2

will yield an estimator, m, which is identical

to that defined as Ȳ . We may show that the



value m minimizes the sum of squared devi-

ations about the sample mean, and that any

other value m′ would have a larger sum (or

would not be “least squares”). Standard re-

gression techniques, to which we will devote

much of the course, are often called “OLS”:

ordinary least squares.

Interval estimation and confidence inter-

vals

Since an estimator will yield a value (or point

estimate) as well as a sampling variance, we

may generally form a confidence interval around

the point estimate in order to make proba-

bility statements about a population param-

eter. For instance, the fraction of Firestone

tires involved in fatal accidents is surely not

0.0005 of those sold. Any number of samples

would yield estimates of that mean differing



from that number (and for a continuous ran-

dom variable, the probability of a point is zero).

But we can test the hypothesis that 0.0005 of

the tires are involved with fatal accidents if we

can generate both a point and interval esti-

mate for that parameter, and if the interval

estimate cannot reject 0.0005 as a plausible

value. This is the concept of a confidence in-

terval, which is defined with regard to a given

level of “confidence” or level of probability. For

a standard normal (N(0,1)) variable,

P

(
−1.96 <

Ȳ − µ
1/
√
n
< 1.96

)
= 0.95.

which defines the interval estimate(
Ȳ − 1.96√

n
, Ȳ + 1.96√

n

)
. We do not conclude from

this that the probability that µ lies in the inter-

val is 0.95; the population parameter either lies

in the interval or it does not. The proper way

to consider the confidence interval is that if

we construct a large number of random sam-

ples from the population, 95% of them will



contain µ. Thus, if a hypothesized value for µ

lies outside the confidence interval for a single

sample, that would occur by chance only 5%

of the time.

But what if we do not have a standard normal

variate, for which we know the variance equals

unity? If we have a variable X, which we con-

clude is distributed as N
(
µ, σ2

)
, we arrive at

the difficulty that we do not know σ2 : and thus

cannot specify the confidence interval. Via the

method of moments, we replace the unknown

σ2 with a consistent estimate, S2, to form the

transformed statistic

Ȳ − µ
S/
√
n

˜ tn

denoting that its distribution is no longer stan-

dard normal, but “student’s t” with n degrees

of freedom. The t distribution has fatter tails



than does the normal; above 20 or 25 degrees

of freedom, it is approximated quite well by

the normal. Thus, confidence intervals con-

structed with the t distribution will be wider

for small n, since the value will be larger than

1.96. A 95% confidence interval, given the

symmetry of the t distribution, will leave 2.5%

of probability in each tail (a two-tailed t test).

If cα is the 100(1-α) percentile in the t distribu-

tion, a 100(1-α)% confidence interval for the

mean will be defined as:

ȳ − cα/2
s
√
n
, ȳ + cα/2

s
√
n

where s is the estimated standard deviation of

Y . We often refer to s√
n

as the standard er-

ror of the parameter–in this case, the standard

error of our estimate of µ. Note well the dif-

ference between the concepts of the standard

deviation of the underlying distribution (an es-

timate of σ) and the standard error, or preci-

sion, of our estimate of the mean µ. We will



return to this distinction when we consider re-

gression parameters. A simple rule of thumb,

for large samples, is that a 95% confidence in-

terval is roughly two standard errors on either

side of the point estimate–the counterpart of

a “t of 2” denoting significance of a param-

eter. If an estimated parameter is more than

two standard errors from zero, a test of the hy-

pothesis that it equals zero in the population

will likely be rejected.

Hypothesis testing

We want to test a specific hypothesis about

the value of a population parameter θ. We may

believe that the parameter equals 0.42; so that

we state the null and alternative hypotheses:

H0 : θ = 0.42

HA : θ 6= 0.42



In this case, we have a two-sided alternative:

we will reject the null if our point estimate

is “significantly” below 0.42, or if it is “sig-

nificantly” above 0.42. In other cases, we

may specify the alternative as one-sided. For

instance, in a quality control study, our null

might be that the proportion of rejects from

the assembly line is no more than 0.03, versus

the alternative that it is greater than 0.03. A

rejection of the null would lead to a shutdown

of the production process, whereas a smaller

proportion of rejects would not be cause for

concern. Using the principles of the scientific

method, we set up the hypothesis and consider

whether there is sufficient evidence against the

null to reject it.

Like the principle that a finding of guilt must

be associated with evidence beyond a reason-

able doubt, the null will stand unless sufficient

evidence is found to reject it as unlikely. Just



as in the courts, there are two potential errors

of judgment: we may find an innocent person

guilty, and reject a null even when it is true;

this is Type I error. We may also fail to con-

vict a guilty person, or reject a false null; this

is Type II error. Just as the judicial system

tries to balance those two types of error (es-

pecially considering the consequences of pun-

ishing the innocent, or even putting them to

death), we must be concerned with the magni-

tude of these two sources of error in statistical

inference.

We construct hypothesis tests so as to make

the probability of a Type I error fairly small;

this is the level of the test, and is usually

denoted as α. For instance, if we operate at

a 95% level of confidence, then the level of

the test is α = 0.05. When we set α, we are

expressing our tolerance for committing a Type

I error (and rejecting a true null). Given α,



we would like to minimize the probability of

a Type II error, or equivalently maximize the

power of the test, which is just one minus the

probability of committing a Type II error, and

failing to reject a false null. We must balance

the level of the test (and the risk of falsely

rejecting the truth) with the power of the test

(and failing to reject a false null).

When we use a computer program to calculate

point and interval estimates, we are given the

information that will allow us to reject or fail to

reject a particular null. This is usually phrased

in terms of p-values, which are the tail proba-

bilities associated with a test statistic. If the

p-value is less than the level of the test, then it

leads to a rejection: a p-value of 0.035 allows

us to reject the null at the level of 0.05. One

must be careful to avoid the misinterpretation

of a p-value of, say, 0.94, which is indicative

of the massive failure to reject that null.



One should also note the duality between con-

fidence intervals and hypothesis tests. They

utilize the same information: the point esti-

mate, the precision as expressed in the stan-

dard error, and a value taken from the under-

lying distribution of the test statistic (such as

1.96). If the boundary of the 95% confidence

interval contains a value δ, then a hypothesis

test that the population parameter equals δ will

be on the borderline of acceptance and rejec-

tion at the 5% level. We can consider these

quantities as either defining an interval esti-

mate for the parameter, or alternatively sup-

porting an hypothesis test for the parameter.


