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Chapter 8: Heteroskedasticity

In laying out the standard regression model,
we made the assumption of homoskedasticity
of the regression error term: that its variance
is assumed to be constant in the population,
conditional on the explanatory variables. The
assumption of homoskedasticity fails when the
variance changes in different segments of the
population: for instance, if the variance of the
unobserved factors influencing individuals’ sav-
ing increases with their level of income. In such
a case, we say that the error process is het-
eroskedastic. This does not affect the opti-
mality of ordinary least squares for the compu-
tation of point estimates–and the assumption
of homoskedasticity did not underly our deriva-
tion of the OLS formulas. But if this assump-
tion is not tenable, we may not be able to rely



on the interval estimates of the parameters–on

their confidence intervals, and t−statistics de-

rived from their estimated standard errors. In-

deed, the Gauss-Markov theorem, proving the

optimality of least squares among linear un-

biased estimators of the regression equation,

does not hold in the presence of heteroskedas-

ticity. If the error variance is not constant,

then OLS estimators are no longer BLUE.

How, then, should we proceed? The classical

approach is to test for heteroskedasticity, and

if it is evident, try to model it. We can de-

rive modified least squares estimators (known

as weighted least squares) which will regain

some of the desirable properties enjoyed by

OLS in a homoskedastic setting. But this ap-

proach is sometimes problematic, since there

are many plausible ways in which the error vari-

ance may differ in segments of the population–

depending on some of the explanatory variables



in our model, or perhaps on some variables

that are not even in the model. We can use

weighted least squares effectively if we can de-

rive the correct weights, but may not be much

better off if we cannot convince ourselves that

our application of weighted least squares is

valid.

Fortunately, fairly recent developments in econo-

metric theory have made it possible to avoid

these quandaries. Methods have been devel-

oped to adjust the estimated standard errors

in an OLS context for heteroskedasticity of

unknown form–to develop what are known as

robust standard errors. Most statistical pack-

ages now support the calculation of these ro-

bust standard errors when a regression is esti-

mated. If heteroskedasticity is a problem, the

robust standard errors will differ from those

calculated by OLS, and we should take the for-

mer as more appropriate. How can you com-

pute these robust standard errors? In Stata,



one merely adds the option ,robust to the regress

command. The ANOVA F-table will be sup-
pressed (as will the adjusted R2 measure), since
neither is valid when robust standard errors are
being computed, and the term “robust” will be
displayed above the standard errors of the co-
efficients to remind you that robust errors are
in use.

How are robust standard errors calculated? Con-
sider a model with a single explanatory vari-
able. The OLS estimator can be written as:

b1 = β1 +

∑
(xi − x̄)ui∑
(xi − x̄)2

This gives rise to an estimated variance of the
slope parameter:

V ar (b1) =

∑
(xi − x̄)2 σ2

i(∑
(xi − x̄)2

)2 (1)



This expression reduces to the standard ex-
pression from Chapter 2 if σ2

i = σ2 for all ob-
servations:

V ar (b1) =
σ2∑

(xi − x̄)2

But if σ2
i 6= σ2 this simplification cannot be

performed on (1). How can we proceed? Hal-
bert White showed (in a famous article in Econo-
metrica, 1980) that the unknown error vari-
ance of the ith observation, σ2

i , can be consis-
tently estimated by e2

i−that is, by the square
of the OLS residual from the original equation.
This enables us to compute robust variances of
the parameters–for instance, (1) can now be
computed from OLS residuals, and its square
root will be the robust standard error of b1.
This carries over to multiple regression; in the
general case of k explanatory variables,

V ar
(
bj
)
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r2
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2
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where e2
i is the square of the ith OLS residual,

and rijis the ith residual from regressing vari-

able j on all other explanatory variables. The

square root of this quantity is the heteroskedasticity-

robust standard error, or the “White” stan-

dard error, of the jth estimated coefficient. It

may be used to compute the heteroskedasticity-

robust t−statistic, which then will be valid for

tests of the coefficient even in the presence of

heteroskedasticity of unknown form. Likewise,

F -statistics, which would also be biased in the

presence of heteroskedasticity, may be consis-

tently computed from the regression in which

the robust standard errors of the coefficients

are available.

If we have this better mousetrap, why would

we want to report OLS standard errors–which

would be subject to bias, and thus unreliable,

if there is a problem of heteroskedasticity? If



(and only if) the assumption of homoskedas-
ticity is valid, the OLS standard errors are pre-
ferred, since they will have an exact t−distribution
at any sample size. The application of robust
standard errors is justified as the sample size
becomes large. If we are working with a sam-
ple of modest size, and the assumption of ho-
moskedasticity is tenable, we should rely on
OLS standard errors. But since robust stan-
dard errors are very easily calculated in most
statistical packages, it is a simple task to esti-
mate both sets of standard errors for a partic-
ular equation, and consider whether inference
based on the OLS standard errors is fragile.
In large data sets, it has become increasingly
common practice to report the robust standard
errors.

Testing for heteroskedasticity

We may want to demonstrate that the model
we have estimated does not suffer from het-
eroskedasticity, and justify reliance on OLS and



OLS standard errors in this context. How might

we evaluate whether homoskedasticity is a rea-

sonable assumption? If we estimate the model

via standard OLS, we may then base a test

for heteroskedasticity on the OLS residuals.

If the assumption of homoskedasticity, condi-

tional on the explanatory variables, holds, it

may be written as:

H0 : V ar (u|x1, x2, ..., xk) = σ2

And a test of this null hypothesis can evalu-

ate whether the variance of the error process

appears to be independent of the explanatory

variables. We cannot observe the variances

of each observation, of course, but as above

we can rely on the squared OLS residual, e2
i ,

to be a consistent estimator of σ2
i . One of

the most common tests for heteroskedastic-

ity is derived from this line of reasoning: the



Breusch–Pagan test. The BP test involves

regressing the squares of the OLS residuals on

a set of variables—such as the original explana-

tory variables—in an auxiliary regression:

e2
i = d0 + d1x1 + d2x2 + ...dkxk + v (3)

If the magnitude of the squared residual—a

consistent estimator of the error variance of

that observation—is not related to any of the

explanatory variables, then this regression will

have no explanatory power: its R2 will be small,

and its ANOVA F−statistic will indicate that

it does not explain any meaningful fraction of

the variation of e2
i around its own mean. (Note

that although the OLS residuals have mean

zero, and are in fact uncorrelated by construc-

tion with each of the explanatory variables,

that does not apply to their squares). The



Breusch–Pagan test can be conducted by ei-
ther the ANOVA F−statistic from (3), or by a
large-sample form known as the Lagrange mul-
tiplier statistic: LM = n × R2 from the auxil-
iary regression. Under H0 of homoskedasticity,
LM ∼ χ2

k.

The Breusch–Pagan test can be computed with
the estat hettest command after regress.

regress price mpg weight length

estat hettest

which would evaluate the residuals from the re-
gression for heteroskedasticity, with respect to
the original explanatory variables. The null hy-
pothesis is that of homoskedasticity; if a small
p−value is received, the null is rejected in fa-
vor of heteroskedasticity (that is, the auxiliary
regression (which is not shown) had a mean-
ingful amount of explanatory power). Therou-
tine displays the LM statistic and its p−value



versus the χ2
k distribution. If a rejection is re-

ceived, one should rely on robust standard er-

rors for the original regression. Although we

have demonstrated the Breusch–Pagan test by

employing the original explanatory variables,

the test may be used with any set of variables–

including those not in the regression, but sus-

pected of being systematically related to the

error variance, such as the size of a firm, or

the wealth of an individual.

The Breusch-Pagan test is a special case of

White’s general test for heteroskedastic-

ity. The sort of heteroskedasticity that will

damage OLS standard errors is that which in-

volves correlations between squared errors and

explanatory variables. White’s test takes the

list of explanatory variables {x1, x2, ..., xk} and

augments it with squares and cross products

of each of these variables. The White test

then runs an auxiliary regression of e2
i on the



explanatory variables, their squares, and their

cross products. Under the null hypothesis, none

of these variables should have any explanatory

power, if the error variances are not system-

atically varying. The White test is another

LM test, of the n × R2 form, but involves a

much larger number of regressors in the aux-

iliary regression. In the example above, rather

than just including mpg weight length,we would

also include mpg2, weight2, length2, mpg×weight,
mpg×length, and weight×length: 9 regressors

in all, giving rise to a test statistic with a χ2
(9)

distribution.

How can you perform White’s test? Give the

command ssc install whitetst (you only need

do this once) and it will install this routine in

Stata. The whitetst command will automat-

ically generate these additional variables and

perform the test after a regress command.

Since Stata knows what explanatory variables



were used in the regression, you need not spec-

ify them; just give the command whitetst after

regress. You may also use the fitted option to

base the test on powers of the predicted val-

ues of the regression rather than the full list of

regressors, squares and cross products.

Weighted least squares estimation

As an alternative to using heteroskedasticity-

robust standard errors, we could transform the

regression equation if we had knowledge of the

form taken by heteroskedasticity. For instance,

if we had reason to believe that:

V ar(u|x) = σ2h(x)

where h(x) is some function of the explana-

tory variables that could be made explicit (e.g.



h(x) = income), we could use that informa-

tion to properly specify the correction for het-

eroskedasticity. What would this entail? Since

in this case we are saying that V ar(u|x) ∝
income, then the standard deviation of ui, con-

ditional on incomei, is
√
incomei. Thus could be

used to perform weighted least squares: a

technique in which we transform the variables

in the regression, and then run OLS on the

transformed equation. For instance, if we were

estimating a simple savings function from the

dataset saving.dta, in which sav is regressed

on inc, and believed that there might be het-

eroskedasticity of the form above, we would

perform the following transformations:

gen sd=sqrt(inc)

gen wsav=sav/sd

gen kon=1/sd

gen winc=inc/sd

regress wsav kon winc,noc



Note that there is no constant term in the

weighted least squares (WLS) equation, and

that the coefficient on winc still has the same

connotation: that of the marginal propensity

to save. In this case, though, we might be

thankful that Stata (and most modern pack-

ages) have a method for estimating WLS mod-

els by merely specifying the form of the weights:

regress sav inc [aw=1/inc]

In this case, the “aw” indicates that we are us-

ing “analytical weights”—Stata’s term for this

sort of weighting—and the analytical weight

is specified to be the inverse of the observa-

tion variance (not its standard error). If you

run this regression, you will find that its coef-

ficient estimates and their standard errors are

identical to those of the transformed equation–

with less hassle than the latter, in which the

summary statistics (F-statistic, R2, predicted



values, residuals, etc.) pertain to the trans-

formed dependent variable (wsav) rather than

the original variable.

The use of this sort of WLS estimation is less

popular than it was before the invention of

“White” standard errors; in theory, the trans-

formation to homoskedastic errors will yield

more attractive properties than even the use

of “White” standard errors, conditional on our

proper specification of the form of the het-

eroskedasticity. But of course we are not sure

about that, and imprecise treatment of the

errors may not be as attractive as the less

informed technique of using the robust esti-

mates.

One case in which we do know the form of

the heteroskedasticity is that of grouped data,

in which the data we are using has been ag-

gregated from microdata into groups of dif-

ferent sizes. For instance, a dataset with 50



states’ average values of income, family size,

etc. calculated from a random sample of the

U.S. population will have widely varying preci-

sion in those average values. The mean val-

ues for a small state will be computed from

relatively few observations, whereas the coun-

terpart values for a large state will be more

precisely estimated. Since we know that the

standard error of the mean is σ/
√
n, we recog-

nize how this effect will influence the precision

of the estimates. How, then, can we use this

dataset of 50 observations while dealing with

the known heteroskedasticity of the states’ er-

rors? This too is weighted least squares, where

the weight on the individual state should be its

population. This can be achieved in Stata by

specifying “frequency weights”–a variable con-

taining the number of observations from which

each sample observation represents. If we had

state-level data on saving, income and popula-

tion, we might regress saving income [fw=pop]

to achieve this weighting.



One additional observation regarding heteroskedas-
ticity. We often see, in empirical studies, that
an equation has been specified in some ra-
tio form—for instance, with per capita depen-
dent and independent variables for data on
states or countries, or in terms of financial ra-
tios for firm- or industry-level data. Although
there may be no mention of heteroskedastic-
ity in the study, it is very likely that these ra-
tio forms have been chosen to limit the po-
tential damage of heteroskedasticity in the es-
timated model. There can certainly be het-
eroskedasticity in a per-capita form regression
on country-level data, but it is much less likely
to be a problem than it would be if, say, the lev-
els of GDP were used in that model. Likewise,
scaling firms’ values by total assets, or total
revenues, or the number of employees will tend
to mitigate the difficulties caused by extremes
in scale between large corporations and corner
stores. Such models should still be examined
for their errors’ behavior, but the popularity of
the ratio form in these instances is an implicit
consideration of potential heteroskedasticity.


