
Econometrics with Octave

Dirk Eddelbüttel∗

Bank of Montreal, Toronto, Canada. Dirk.Eddelbuettel@bmo.com

November 1999

Summary

GNU Octave is an open-source implementation of a (mostly Matlab compatible) high-level language
for numerical computations. This review briefly introduces Octave, discusses applications of Octave
in an econometric context, and illustrates how to extend Octave with user-supplied C++ code.
Several examples are provided.

1 Introduction

Econometricians sweat linear algebra. Be it for linear or non-linear problems of estimation or infer-
ence, matrix algebra is a natural way of expressing these problems on paper. However, when it comes
to writing computer programs to either implement tried and tested econometric procedures, or to
research and prototype new routines, programming languages such as C or Fortran are more of a bur-
den than an aid. Having to enhance the language by supplying functions for even the most primitive
operations adds extra programming effort, introduces new points of failure, and moves the level of
abstraction further away from the elegant mathematical expressions. As Eddelbüttel (1996) argues,
object-oriented programming provides ‘a step up’ from Fortran or C by enabling the programmer to
seamlessly add new data types such as matrices, along with operations on these new data types, to
the language. But with Moore’s Law still being validated by ever and ever faster processors, and,
hence, ever increasing computational power, the prime reason for using compiled code, i.e. speed,
becomes less relevant. Hence the growing popularity of interpreted programming languages, both, in
general, as witnessed by the surge in popularity of the general-purpose programming languages Perl
and Python and, in particular, for numerical applications with strong emphasis on matrix calculus
where languages such as Gauss, Matlab, Ox, R and Splus, which were reviewed by Cribari-Neto and
Jensen (1997), Cribari-Neto (1997) and Cribari-Neto and Zarkos (1999), have become popular. This
article introduces another interpreted language focussed on numerical applications: Octave.

Octave is a program, as well as a programming language, for doing numerical work in a convenient
yet powerful fashion. Octave was written primarily by John W. Eaton of the University of Wisconsin-
Madison with various smaller contributions from programmers across the Internet. The history of
Octave can be traced back (as far as 1988) to the idea of companion software for a textbook in
chemical engineering. Full-time development for Octave began in the spring of 1992. Version 1.0 was
∗Comments and suggestions by Francisco Cribari-Nero, John Eaton, Kurt Hornik, James MacKinnon, Lisa Powell

and Colin Telmer are gratefully acknowledged.

1



released in February of 1994, and version 2.0 followed in January of 1997. Octave is part of the GNU
project (at http://www.gnu.org) and released under the GNU General Public License (GPL). It can
therefore be used, studied, extended or simply copied just like any other Free Software program.1

Econometricians might want to employ Octave for a variety of applications, as it provides a convenient
tool for interactive work which can range from simple applications to ad hoc simulations. The user
interface, i.e. the Octave shell, is flexible and powerful. The rich set of mathematical operators and
functions make Octave a very good prototyping and programming platform, or data pre- and post-
processing application. As Octave can be extended with new C, C++ or Fortran code that runs at
the speed of compiled code, it is a good building block for Monte Carlo simulations. Octave is very
similar to Matlab, and to a lesser extent to Gauss. However, both of these are commercial ‘closed
source’ programs whereas Octave, as noted above, is distributed under the GNU GPL.

Octave is currently at version 2.0.14. Akin to Linux kernel development, the ‘stable’ 2.0.* branch
corresponds to the released version. Meanwhile, development progresses with a 2.1.* branch (currently
at 2.1.14) which will eventually replace the 2.0.* series. While this review focuses on Octave 2.0.14, it
should also be relevant to the 2.1.* series. The Octave web site at http://www.che.wisc.edu/octave
is the best starting point for Octave. It contains the source code as well as binary versions for different
operating systems. Moreover, documentation is available in several forms of the manual as well as via
the mailing list archives which contain a large number of helpful posts. The help-octave list is for
general discussions related to installation and use of Octave and the bug-octave list is for reporting
bugs (preferably using the bug_report command). It should be pointed out that John Eaton, on
several occasions, has posted patches within hours of a bug report — an exceptional service. Also
of note are the octave-sources list which distributes contributed functions and scripts, and the
info-octave list for announcements. Octave is also included in several Linux distributions.

The rest of this review is organized as follows. The next section provides an overview of Octave,
followed by a critical examination of its strengths and weaknesses. Sections 4 and 5 provide a simple
Monte Carlo experiment and an example of extending Octave before section 6 concludes.

2 Overview

This section introduces core aspects of the Octave language. Certain features will be familiar to
readers who have worked with other matrix-type language such as Matlab, Gauss or Ox.

Octave has a few standard data types. Without doubt, the most important one is the matrix, which
also covers the scalar and vector cases. Matrices support real and complex arithmetic. For example,
A = [1, 2, 3; 4, 5, 6] assigns a 2 by 3 matrix to the variable A. Note that the semicolon is used
to separate rows, whereas the comma separates elements within a row. The result of this operation,
i.e. the matrix A, will be displayed in an interactive session, as the assignment is not terminated by a
semicolon. Conversely, in d = det(A*A’);, the scalar d that results from computing the determinant
of AA′, will not be displayed because this assignment is terminated by a semicolon. Note that
we did not have to declare either of these variables; their type is determined at run time. Octave
allocates memory as needed, which also allows for ‘re-allocating’ a variable to a different type, and
for ‘growing’ variables by extending the array dimension. In passing, we also introduced the operator
’ for transposing a matrix.

1Several terms such as ‘copylefted’, ‘Free Software’ and ‘Open Source’ are used to describe software which is available
in source code format, and without restrictions on its use. Prominent examples include software from the GNU project,
the X11 window system and the Linux operating system. See Eddelbüttel (1996) for a review of the GNU GCC compiler
in conjunction with a C++ matrix class, and MacKinnon (1999) for a review of the Debian GNU/Linux operating system.

2



Another important data type is the range which is defined by using a colon between the lower and
upper bound. For example, 1:10 defines the range of integers from 1 to 10, and returns it as a
row vector. An increment can be added as an optional second argument: (10:5:30)’ generates a
column vector with the six elements 5, 10, 15, 20, 25, 30. Related to ranges are indices. Suppose we
write T=1:100;. Then T(5) selects the fifth element, and T([10, 20, 40]) returns a vector which
contains the elements of T with indices 10, 20 and 40. Indexing expressions such as the last one
can appear on the left-hand side as well as on the right-hand side of an assignment. An important
operator for indices is the single colon which could loosely be called an ‘all’ operator. For example,
A(:,2) refers to the second column as all rows are selected via the colon.

Character strings are also available. A string is a row vector of characters: a = "hello" assigns a
string to a variable a. We can access elements of a just like we can access numerical matrices: a(3)
selects the first ‘l’. Further, matrix operations can be used for concatenation: b = [a, " world"]
creates one longer string (row vector). A semicolon can be used to separate rows, just as with
numerical matrices: c=["one"; "two"; "three"]; creates a three by five character matrix, the first
two rows of which are automatically padded with blanks.

Lastly, Octave supports structures. For example, a.b = c; assigns the content of the variable c to
the element b of a. Therefore, a is now of type structure. Structures can be recursive: the variable
c could itself have been a structure. This provides a simple way to create custom types to regroup
information in a simple entity in order to maintain compact interfaces between functions. For example,
instead of returning results individually, a function for linear regression could return a structure that
contains a vector of parameter estimates, vectors of residuals and fitted values, and scalars containing
various statistics.

Operators work as expected in Octave. The language has the usual algebraic, boolean and com-
parison operators. For several algebraic operations, Octave also has ‘dot’ operators that apply to
individual elements. To use these, the dot is prepended to the operator. For example, if A and B are
two matrices, then A*B multiplies them in the habitual sense of matrix multiplication whereas A.*B
computes the Hadamard product obtained by elementwise multiplication. This also extends, where
appropriate, to other operations. For example, in 1.05.^(1:30), the scalar value 1.05 is raised to
the power of each element of the range 1:30 thereby creating a vector of the first 30 powers of 1.05.
Another example is the combined use of boolean operators and indexing. Suppose that the matrix
D contains time-series data, and the first column provides the date for each observation in a format
like 19990811. One can then simply extract all observations matching a date range. For example,
DD=D(D(:,1)>=199800101 & D(:,1)<=19891231, :) extracts all columns of the rows corresponding
to the 1980s and assigns them to DD.

Expressions are central to Octave statements. Each expression results in a value, which is printed
if no semicolon follows the expression. The result of an expression can be tested, stored, passed as an
argument to a function, or assigned to a variable. Statements can contain several expressions. For
example, an indexing expression might determine which elements of the left-hand side are assigned
the values of the right-hand side expression as A([1, 3]) = [2, 6];. Here, the matrix expression
[1, 3] determines that the first and third elements of A are assigned the values on the right. The
right-hand side contains a matrix of matching dimension; each of the two (here constant) elements
could itself be a more complicated expression.

Octave keywords are similar to those in other procedural languages. Conditional execution can be
coded using if (condition) then code endif with an optional else branch. There is also a switch
statement with mutually exclusive case branches. Two types of loops are available: for i = index

3



expression code endfor, as well as while (condition) code endwhile. In all these cases, the shorter
keyword end may be substituted for the longer and more explicit versions shown here. Control flow
can be altered with the break and continue keywords. Octave also has limited support for exceptions
using unwind_protect and unwind_protect_cleanup as well as try and catch. Lastly, file input
and output operations are available for ASCII and binary formats via the load and save keywords.

Functions are probably the most central part in using Octave for anything more than simple ad hoc
operations. Octave provides many numerical commands as built-in commands. On a system built
with the ‘enable-shared’ configuration option, these correspond to dynamically-linked code which is
loaded as needed. Otherwise, all these commands are built into the main Octave binary.2 Most of
the builtin numerical Octave commands come from well-known libraries from the Netlib repository
such as Linpack, Minpack, Lapack, Randlib, Balgen, Dassl or Odepack. Not only is this a good idea
in terms of code re-usage, but it is also reassuring in light of the findings by McCullough (1999)
about numerical reliability, or the lack thereof. By tying Octave to these tried-and-tested numerical
‘engines’, the benefit of many person-years of code testing, debugging and improvements are reaped,
and the end user is much less likely to be bitten by deeply hidden numerical bugs.

Beyond these core commands, Octave 2.0.14 comes with over 400 function text files. These functions
cover various topic areas: from linear algebra functions such as kron for a Kronecker product, trigono-
metric functions such as asech for the inverse hyperbolic secant, general functions such as reshape
or shift to alter matrices, miscellaneous functions such as bincoeff to functions for polynomials,
special matrices such as toeplitz or hilb, or string functions such as substr or index. A large num-
ber of statistical functions, often contributed by Kurt Hornik and his colleagues from the Technische
Universität Wien are included. These cover functions for the cdf, pdf, inverse or random numbers for
22 distributions, as well as functions to compute descriptive statistics, moments, ranges, qqplots or
classic statistical tests. A number of these statistical routines were previously distributed separately
by Hornik et al. under the name octave-ci, but with Octave release 2.0.14, they were integrated
into the main Octave release. Some useful files remain in the octave-ci package, notably aload
and asave for a very general interface to reading and writing data from ASCII files. The package is
available from ftp://ftp.ci.tuwien.ac.at/pub/octave/octave-ci.tar.gz, and is also included
in the Debian GNU/Linux distribution.

Functions are the standard way of adding another command: one simply creates a file (in a directory
that is known to Octave, which could be the current directory, or any directory pointed to from
the LOADPATH variable) with the same name as the command itself, followed by the suffix .m. The
following example provides a trivial function returning the current date as a numeric variable in the
YYYYMMDD format.

1 ## Usage: date = today ()

2 ## Returns today’s date in YYYYMMDD format.

3 function date = today ()

4 date = str2num(strftime("%Y%m%d", localtime(time())));

5 endfunction

As can be seen from the example, a function is defined by the keywords function and endfunction.
This particular function today returns a single variable and has no arguments. The example also
shows that Octave can access system library functions such as time, localtime and strftime. The

2The availability of this --enable-shared option depends on the operating system. Essentially all Unix and Linux
versions provide it; but it is still unavailable on Windows 98/NT. Systems without this option cannot be extended
incrementally as shown in the fifth section.

4



comments in the first two lines supply the help text which is displayed if the user requests help today.
Functions can be created ‘on the fly’ in an interactive Octave session, but extra steps must be taken
to save them for another session.

Octave also contains plotting commands which are implemented as wrappers around the external
Gnuplot program. These commands include a generic plot command for plotting one or several series,
as well as commands for plotting histograms and bar charts. All of these can be annotated, and it
is possible to have several plot windows open at the same time (with a Gnuplot release more recent
than 3.5). The Octave plot commands are very convenient, but clearly not as complete as the Matlab
plotting functions and hence might not satisfy all needs for publication-quality graphs. However, add-
on packages have been provided by Octave users. Debian GNU/Linux provides additional graphics
packages such as octave-plplot, an Octave interface to the PLPlot program, and octave-epstk, a
package for the direct creation of encapsulated postscript graphs.

3 Strengths and Weaknesses

Octave is a very convenient tool for numerical and data-centered work. Most importantly, the Octave
language, and its commands, work in a very intuitive way. In the following example, a data set of IBM
stock prices (with the dates in the first column) is loaded from an ASCII file using the load command.
Log-returns are calculated by computing the differences between the logarithms of the stock prices
(given in the second column); this takes just one line invoking the diff and log commands. Next,
descriptive statistics are computed using the statistics function (which returns the minimum, first,
second and third quartiles, maximum, and the first four moments), and displayed as there is no
semicolon. We then compute a one-sided t-test for the null of positive returns. Last, the returns
are plotted as a time series and, in a second window, the histogram is displayed. As we are using
explicitly numbered plot windows, both graphs will be displayed simultaneously.

1 IBM = load IBM.dat

2 IBMret = diff(log(IBM(:,2)));

3 statistics(IBMret)

4 t_test(IBMret, 0, ">")

5 figure(1)

6 plot(IBMret)

7 figure(2)

8 hist(IBMret,50)

Octave is also very flexible in its communication with the host operating system. The system and
popen commands allow the programmer to execute other programs or scripts, and to recover results
from launching these programs. A trivial example would be loadavg=str2num(system("w | head
-1 | cut -c 52-56")); which, in a rather brutish way, extracts the current system load from the
w command and filters the current load out of the returned text. A fine example is provided by the
aload script from the octave-ci package. This shows how to wrap Octave around calls to the Unix
tools awk and sed so that reading data from a comma-delimited file ‘data.csv’ becomes as simple as
X = aload("data.csv", Inf, Inf, ",");. This specifies that an unlimited number of rows and
columns shall be read from the file (provided Octave can allocate enough memory to accommodate
the finite amount of data in the file) and selects the comma as the data delimiter. Also, shell-like
commands such as ls, dir, pwd or cd are available directly in Octave.

Because it uses the GNU Readline library, Octave is very convenient to use interactively. Previ-
ous commands can be accessed using the cursor or control keys, and command completion is avail-
able. For example, to compute a Kolmogorov-Smirnow test, one can type kol followed by a TAB

5



which calls for an automatic expansion to the matching command. In this case, the command-
line is expanded to kolmogorov_smirnov_, the unambiguous expansion. Also shown are the three
commands that match this expansion: kolmogorov_smirnov_cdf, kolmogorov_smirnov_test, and
kolmogorov_smirnov_test_2 for the cdf and test variants against the Normal and a specified alter-
native dataset. Finally, the interactive mode also provides the help command. It can be used to look
up the help provided with a command or function as for example in help(t_test). It can also be
used to look up the Octave manual by adding the -i option as in help -i load.

On the topic of user interfaces, the Emacs support deserves special mention. Three Emacs lisp files,
written by Kurt Hornik based on prior work by John Eaton, provide modes to write Octave code,
to run Octave in an Emacs buffer (with more scrollable history than in a terminal window) and to
access the help system. This Emacs mode supports standard editor features such as automatic colour
highlighting and indentation, as well as more specific features. One useful example is the stanza for
new Octave files. As noted above, creating a new file is the first step in writing new Octave functions.
With the Emacs mode, pressing ‘CTRL-c f’ in a new and empty file buffer (whose name should end
in .m to assign Octave mode) invokes an Emacs function to write the basic structure of the function.
It prompts for the function name, inferring a default from the buffer name, and prompts for function
arguments and return values. These are then inserted into the hitherto empty file, along with a stanza
for the help code. Similarly, the use of the abbrev-mode reduces the amount of typing: for example
‘w triggers insertion of while (). Other notable features are the invocation of context-sensitive help,
and the debugging features which allow one to send individual commands, or blocks of commands, to
the Octave interpreter. All of these make for a rather nice development platform.

A key advantage of Octave is the ‘copylefted’ availability of the source code. Usage of Octave is
therefore not bound to a particular machine or license, and Octave, having been ported to most
common hardware platforms, can be installed throughout a department, lab or university. Octave
was, and is, developed primarily under Unix, so it is not surprising that it has been compiled on
most, if not all, major flavours of Unix. Octave has also been ported to Windows 98/NT, using the
freely available CygWin tools (see http://sourceware.cygnus.com/cygwin/) but remains a little
more difficult to install as a binary package than under Linux. Compiling and installing Octave from
source is very straightforward and follows the usual cycle for a GNU program: configure; make;
make install (but one might want to select some configuration options such as --enable-shared
and --enable-lite-kernel). Also provided is a target make test which runs a very comprehensive
set of regression tests to ensure that Octave has been properly built.

Octave is certainly close to Matlab. John Eaton aims for Matlab compatibility whenever this is
sensible; however, in a few cases, implementation details differ. These small differences add an extra
burden to the creation of code that is intended to run on both platforms. It should be possible to
port most code written for Matlab to Octave with some extra work, provided no Matlab-specific tool
boxes, or new features from Matlab5, were used.

From an econometrician’s viewpoint, the obvious weakness of Octave is a lack of actual econometrics
code — but this is something that the econometrics community could address by making routines
and procedures available on the Internet. A few estimation routines are available; for example, one
for nonlinear regression (at ftp://fly.cnuce.cnr.it/pub/software/octave/) which was ported
from a publicly available Matlab routine. Generally speaking, not even the (public domain) Matlab
archives from the Mathworks (at http://www.mathworks.com/support/downloads.shtml) and the
Mathtools (at http://www.mathtools.net) have much specific econometrics code. One example of
an econometric code archive for Matlab is http://www.econ.utoledo.edu/matlab_gallery.

6



One of the key problems in adding more econometrics code, in particular for non-linear estimation,
lies in the requirement for an adequate non-linear (constrained) optimization routine. Unfortunately,
most of the code available to the research community has been released under somewhat ill-defined
licenses (as for example a simple ‘free for research but contact author for other uses’). This is
fundamentally in conflict with the GNU GPL (as it restricts usage of the code), and therefore precludes
the addition of code thus released to GNU projects such as Octave. A notable exception is a package for
semidefinite programming, written by Lieven Vandenberghe and Stephen Boyd and ported to Octave
by A. Scottedward Hodel (who is also the author of substantial control theory package available at
ftp://ftp.eng.auburn.edu/pub/hodel/); it is also available as a Debian package.

Octave is a very complete program and environment, despite the noticeable lack of actual econometrics
code. Unfortunately, the documentation is less complete. This is, however, understandable. After
all, the code has been produced mostly by volunteers who prefer to concentrate on coding, rather
than something less thrilling such as writing documentation. In effect, the existing documentation is
actually very good. As is the case with other programs from the GNU project, the documentation
is provided in a meta-format called Texinfo. From this format, versions for local on-line reading and
searching (Info), printing (TEX, PostScript, PDF) and local or remote web-browsing (HTML) can
be derived. The (postscript version of the) main Octave manual prints to over 250 pages and its
HTML version can be read on-line at http://www.che.wisc.edu/octave/doc/octave_toc.html.
It provides a good starting point, as well as a reference for Octave. Unfortunately, documentation on
how to use, or re-use, Octave internals and libraries is missing. Also missing is information about the
C++ classes, which makes writing C++ code to extend Octave more difficult than it should be. In
this case, the help-octave mailing list is the best route for those seeking help.

4 A simple Monte Carlo example and comparative performance

In this section, an example of a simple Monte Carlo experiment, taken from Cribari-Neto and Zarkos
(1999), is shown. Examples such as this are valuable for teaching purposes, as they encapsulate
the essential features of a Monte Carlo experiment in a short segment of code. Data generation,
simulation, analysis and presentation of results can all be expressed in a few lines. As in the cited
source, the actual computation of the r Monte Carlo replications is collapsed into the execution of
just one command, showing how to vectorize an entire simulation. This has obvious advantages for
speed. However, more complex problems must typically be dealt with by writing loops:

1 function MC = mcsim (r)

2 if (nargin < 1)

3 r = 1000;

4 end

5 if (r <= 0)

6 error("The number of replications must be positive.\n");

7 end

8 Beta = [ 7.3832; 0.2323 ]; # true parameters

9 sigma2 = 46.852; # true variance

10 x = [ 25.83; 34.31; 42.5; 46.75; 48.29; 48.77; 49.65; 51.94;

11 54.33; 54.87; 56.46; 58.83; 59.13; 60.73; 61.12; 63.1;

12 65.96; 66.4; 70.42; 70.48; 71.98; 72; 72.23; 72.23;

13 73.44; 74.25; 74.77; 76.93; 81.02; 81.85; 82.56; 83.33;

14 83.4; 91.81; 91.81; 92.96; 95.17; 101.4; 114.13; 115.46 ];

15 t = length(x);

16 X = [ ones(t,1), x ];

17 Ysim = (X*Beta)*ones(1,r) + randn(t,r)*sqrt(sigma2);

7



18 MC = inv(X’*X) * X’ * Ysim; # returns estimates on all r replications

19 title("Histogram of b2");

20 xlabel("B2");

21 ylabel("Frequency");

22 hist(MC(2,:), r^0.4);

23 endfunction

Lines 2 to 4 add a test and an assignment to provide a default number of replications. Lines 5 to 7
test to ensure that the parameter is sensible. Lines 8 to 15 set the true parameters, and assign the
invariant explanatory variables. Line 16 generates a t by r matrix — in other words, the t observations
on Xβ are repeated r times, and standard-normal error terms are added. The core of the simulation
is line 18 where the usual least-squares estimation is applied simultaneously to all r simulation steps.
Lines 19 to 22 generate an annotated histogram. Due to the memory requirements from storing r by
t matrices, it may be infeasible to use very large r. The alternative is to use a loop.

1 MC = zeros(2,r);

2 M = inv(X’*X) * X’;

3 for i = 1:r

4 Ysim = X*Beta + randn(t,1)*sqrt(sigma2);

5 MC(:,i) = M * Ysim;

6 end

Here, we first allocate 2r elements for the result matrix which enhances performance as Octave will
not have to resize the matrix during the course of the simulation. We then calculate the matrix M
before the actual loop calculates the r Monte Carlo replications each of which consists of the data
generation, followed by the linear estimation.

This example also provides a good test-bench for performance comparisons. We will time and compare
Octave to two other programs / languages. The first is another product of the GNU project: R, the
open-source implementation of the statistical language S. The second is the commercial closed-source
Matlab package, a very powerful (and expensive) language cum environment very similar to Octave,
but equipped with built-in editors, comprehensive graphics and optional tool boxes. This ties the
comparison to the one by Cribari-Neto and Zarkos (1999) who compared R to the commercial package
Splus. We ran the vectorized version as well as the explicit loops version at four different experiment
sizes. The results are summarized in Table 1.

Table 1: Execution times for Monte Carlo example on Linux

Vectorized Loop

r Octave Oct/MT R Matlab Octave Oct/MT R Matlab

1000 0.18 0.10 0.09 0.08 0.52 0.35 0.53 0.18
5000 0.83 0.40 0.43 0.24 2.43 1.66 2.58 0.74

10000 1.63 0.79 0.84 0.44 4.85 3.30 5.12 1.44
50000 8.10 3.88 4.94 2.12 23.35 16.70 25.75 7.14

Note: Execution time is in seconds; each experiment was run five times. The average of the last three runs, as
reported by cputime() and system.time(), respectively, is shown. All simulations were run on a 333 MHz
laptop with 96 MB of memory running Linux kernel 2.2.10. The Octave version was 2.0.14, the R version
was 0.64.1 and the Matlab version was 5.3.0.108. Oct/MT refers to Octave with the MT random number
generator (see next section). R required an explicit allocation of half the computer’s memory to run the
largest simulation.

8



This simple comparison allows for several interesting observations. Clearly, R is faster than Octave on
the vectorized example where it takes about half as much time as Octave. On the other hand, Octave
is faster than R on the loop example which is more reminiscent of a real-life Monte Carlo study.
These comparisons have to be qualified on two counts. First, R contains an integrated graphics
engine whereas Octave has to communicate with Gnuplot (through Unix pipes, not files). This
communication with an external program must slow Octave down. Second, Octave uses the Randlib
random number generator by Brown, Lovato, Russell, and Venier (1997) which is statistically sound
yet computationally expensive. We have replaced the call to randn in the example above with a
call to the much faster Mersenne Twister random number generator by Matsumoto and Nishimura
(1998), coupled with a standard routine for converting uniform random deviates into standard-normal
ones (see the next section). The results are shown in Table 1 under the ‘Oct/MT’ heading and are
quite striking: on the vectorized example, Octave now requires less than half the time and clearly
outperforms R. Similarly, Octave dominates R further on the loop example. This indicates that the
underlying numerical operations in Octave are indeed fast.

For completeness, we also include the performance of Matlab, a commercial closed-source package
very similar to Octave. The performance seems to warrant the significant price of Matlab; execution
is a lot faster than for either Octave or R. Casual comparison of other code examples would suggest
that Matlab is consistently faster than Octave. However, a complete Matlab installation comes at a
substantial price, especially a non-academic version. Those who are willing to acquire Matlab chiefly
for its faster performance might want to consider buying a faster computer instead. These days, a
rather decent (PC-based) workstation can be purchased for a lesser amount of money.

5 Extending Octave using C++

Extending Octave is quite straightforward. It requires that the operating system supports the creation
of dynamically linked code using the GNU GCC compiler. This is surely the case for Linux, but
not for Windows 98/NT. As an example, we discuss the implementation of a new random number
generator command via a wrapper around the ‘Mersenne Twister’ random number generator (RNG)
by Matsumoto and Nishimura (1998). This generator uses a twisted generalized feedback shift-register
algorithm which has a Mersenne prime period of 219937 − 1 ≈ 106000 and is equi-distributed in 623
dimensions. It passes the ‘DIEHARD’ statistical tests by Marsaglia (1996) and at the same time
is extremely fast and efficient in terms of memory usage. The wrapper code was written for an
improved version by Shawn Cokus; this version is also available from the Mersenne Twister page at
http://www.math.keio.ac.jp/matumoto/emt.html. The Mersenne Twister is a good example of
how releasing a product of scholarly research under a well-understood license, the GNU GPL, leads
not only to academic acclaim, but also to widespread actual implementations of the code in a variety
of other open-source applications.

With the wrapper code in a file randmt.cc 3 and the actual RNG code in another file cokus.c,
creating a compiled and dynamically loadable .oct file is as simple as typing mkoctfile randmt.cc
cokus.c. This first compiles the random-number generator (from the file cokus.c) and then compiles
and links the wrapper code (from the file randmt.cc) to form a new command randmt.oct. As a
file with the extension .oct is seen as a loadable Octave module, it can be invoked by its name, here
randmt. Generally, any valid C++ file can be translated with mkoctfile into a loadable module. C

3Due to space constraints, we have omitted the C++ code which is available at http://rosebud.sps.queensu.ca/

~edd/code/octave-mt.html along with documentation and support files.

9



and Fortran can also be called from C++, but a discussion of this is beyond the scope of this review.
If a command is implemented as both an .m and .oct file, the latter is given priority. It is also
possible to call other Octave functions, whether implemented as .oct or .m files, which makes for a
very powerful way to accelerate execution speed by re-writing time-critical components as .oct files.
As mentioned above, the main problem with using C++ (or C or Fortran) to extend Octave is a lack
of documentation about Octave’s C++ API. On the other hand, tools like the open-source program
matwrap, available at http://lnc.usc.edu/~holt/matwrap/, can aid in extending Octave. From a
simple list of functions as presented in a header file, matwrap can generate all the required interface
code for calling C++ code for Octave, or Matlab for that matter. This makes interfacing other C or
C++ code much easier, and facilitates the integration with other libraries.

Just how much execution time can be saved by converting (interpreted) code from an .m file to
(compiled) code in an .oct file? As a possible upper limit, we can consider the case of two nested
loops around a very simple assignment, in this case the product of the current loop indices. This
example is arguably pathological as it stresses the controlling outer loops over a very simple inner
assignment whereas in real-life situation, more complex code would be placed inside the loops.

In this case, the interpreted .m file requires 108.54 seconds when n = 1000, while the compiled version
requires only 0.18 seconds, a 600-fold increase in speed. While this example is arguably not a good
representation of real-life applications, it still illustrates that the speed gain from compiled code can
be very significant indeed.

6 Conclusion

This review has introduced the GNU Octave numerical programming environment by giving an ex-
tended overview, followed by a discussion of both positive and negative aspects of this language and
environment. We have shown that data manipulation is straightforward with Octave. Using a simple
Monte Carlo simulation, we illustrated the performance of Octave relative to that of several other
packages. Next, we showed of a faster random number generator can improve performance quite sig-
nificantly when Octave is used for simulation-based applications. Finally, a more general discussion of
how to extend Octave with dynamically loadable code was provided, and illustrated with an (extreme
case) of potential performance gains.

A key advantage of Octave is its GNU GPL license: copies of Octave can be given to colleagues,
friends and students at will. The GNU R statistical environment is the only other major numerical
program that is available under this license. While R, with its focus on modern statistics and data
analysis, is quite interesting in its own right, Octave might be a more appropriate choice for primarily
numerical work, as the Octave language appears somewhat easier to learn and already comprises a
rich set of numerical functions and operators.

GNU Octave is a very powerful tool for doing numerical work, ranging from ad-hoc computations to
elaborate simulation studies. Octave combines a clean and elegant language with a versatile inter-
active shell. This makes it very easy to prototype and implement new applications and procedures,
both for applied work and new research. While Octave currently lacks more genuinely econometric
applications, it has all the necessary ingredients for becoming a common platform for econometricians.

References

Brown, Barry W., James Lovato, Kathy Russell, and John Venier (1997). RANDLIB: Library of
Fortran routines for random number generation. Department of Biomathematics, M.D. Anderson

10



Cancer Center, University of Texas, Houston. Source code is available at ftp://odin.mdacc.
tmc.edu/pub/source/.

Cribari-Neto, Francisco (1997). Econometric programming environments: GAUSS, Ox and S-PLUS.
Journal of Applied Econometrics 12(1), 77–89.

Cribari-Neto, Francisco and Mark J. Jensen (1997). MATLAB as an econometric programming envi-
ronment. Journal of Applied Econometrics 12(6), 735–744.

Cribari-Neto, Francisco and Spyros G. Zarkos (1999). R: Yet another econometric programming en-
vironments. Journal of Applied Econometrics 14(3), 319–29.

Eddelbüttel, Dirk (1996). Object-oriented econometrics: Matrix programming in C++ using GCC
and Newmat. Journal of Applied Econometrics 11(2), 199–209.

MacKinnon, James G. (1999). The Linux operating system: Debian GNU/Linux. Journal of Applied
Econometrics 14(4), 443–453.

Marsaglia, George (1996). DIEHARD: a battery of tests for random number generators. Available
from the DIEHARD cdrom archive at http://www.csis.hku.hk/internet/randomCD.html.

Matsumoto, Makoto and Takuji Nishimura (1998). Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudorandom number generator. ACM Transactions on Modeling and Com-
puter Simulation 8(1), 3–30. Code and information available at http://www.math.keio.ac.jp/
matumoto/emt.html.

McCullough, Bruce D. (1999). Econometrics software reliablility: Eviews, LIMDEP, SHAZAM and
TSP. Journal of Applied Econometrics 14(2), 191–202.

11


