EC821: Time Series Econometrics, Soring 2003

Notes Section 1

Data types

In the narowestsense, this course is concerned with time
series data—those in which the individual observations are
Indexed by some notation of calendar time. What is a time
series? In a very simple sense, merely a set of data indexed [
some regular increment of time, which may or not be regular
In the sense of the calendar. For instance, an interest rate ser
containng observations &m the last dy of each month will be
unequally speed in calendar time—and is likely that the “last
day” will be other than that in the presence of weekends and
holidays. Also, we often work with time series of “business
daly” data, generated (at most) five days per week. We assum
that thel' observations available are a finite segment of a douk
Infinite sequence, which goes back into the infinite past, and
forward to infinty. We might consider several specific time
series: for instance, a time trend is mergly= t; a constant
series iy = ¢, and a Gaussian white noise procegs+4s¢;.

We speak of time series data to contrast with the other
major form of data organizatmo the cross seion, in which
each observation is indexed by idertifier such as a person’s
Social Security number, a company’s CUSIP, a country’s ISO
abbreviation, or a survey respdent’s questionnaire ID. But
there are two other forms of data organization which we often
encounter, and which are verglevant for much of the research
caried out withtime series data. These are pooled cross sectior
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and longitudinal or panel dataoBled cross sections, even if the
cross sections are of the same size (e.g., 400 respondents to
weekly pdl of presidential popularity) do not give rise directly
to time series, since the individual observations are not linked
across time. However, summasyatistics from each of these
Cross sections may be computed, and assembled into time ser
to illustrate temporal changes in the sample’s measures of cent
tendency and dispersion.

One of the most radly expanding area applied econo-
metics is the use of longitudinal, or panel, data—data indexed
by both: andt 8gbscrips, essentially regated measurements
on the same indiduals over time. Panel data in common use
In economics and finance have tended to appear in two comm
forms: the “small T, large N'panel, exemplied by Conpu-
stat frm—level dta, or the Panel Study of Income Dynamics
houselold dat. These datasets have relatively few time—series
observéions but tlousands of individuals. Many of the econo-
metic techniques developed in this area make use of the “sma
T, large N” setting: for instance, Arellano and Bond’s dynamic
panel data GMMedimation technique (cf. Stata command
xt abond). The econometritheory underlying these estima-
tors is based on N> oo for T fixed. In this context, there are
few time—series aspects of the data that may be modelled, sinc
the number of time series observations is quite limited. The oth
common form is the ‘mall N, large T” panel, exempified by
daily daa from the financial markets (G—7 exchange rates or Iin
flation rates, stock price series for a limited number of firms, etc
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In this context, we generally have hundreds or thousands of tin
series observations on each ubiit a reatively small number of
units. This allows many more ohé time series properties of the
datato be exploited in the estimation. Similar to the first form,
the underlying asymptotic theory for estimators applied to thes
datais based o the assumption that+ oo for N fixed. Datasets
of these form areften use to perfam panel unit root tests, or
analy®s of cointegration.

Dimensionality

When we utilise time series data, it is important to determin
the dimensionality of a variable: e.g., whether it refers to a leve
stock, flow, or rée of change. An interest rate, or a consumer
price index, or a index of indugtial production at a pant in
time is a level. The capital stock employed by the firms in
an industry at a@nt in time is just that—a stock, in units of
number ofmachines, orheir vdue in real terms. That stock is
accumulged or decumulated over time via capital investment,
which is a flow—and rast reer to the unit of time over which
the flow is measured. If a flow is converted into percentage terrr
It becomes a dimensionless rate of change, such as the rate ¢
change of the consumerice index,which we term nflation. It
IS customary to rasure rates of changeam anmial rate,so that
Inflation might be described as reaching three percent last mon
for most economies, this doestrreflect the monthly change in
the price level, but rather thmonthly change @ampounded to an
annual rate.

Time series operators



We make extensivesg in time series models of various
time series operators, as shorthand to specify how a variable i
be transformed. For it@nce, the multiplication operator might
be used:y; = (z;. Unlike ainary dgebraic manipulation,
this represents applying the operator to each element of the tir
series (for all defined), analogous to filling a formula through a
the rows of a spreadsheet, or using Stag@ser at e commat
to define a mappng between apd Since the multiplication c
addition operators refer to element—wise operations, they follow
all the rules of lyebra: e.gz; = G (y + x;) can be implemented
ather by adding each period’s values and multiplying the resuls
by 3, or by multiplying through the parens and then summing.
Multiplication and addition are commutative.

The comnonly employel first difference operator),

transforms a series into its increments: for instant&), , the
first difference of the capital stock, will by convention generate
the change between the previous period’s vakig,;, and the

current value,K;. T involves corputing the lagged value

of K;, which mayitself be expressed using the lag operator as
LK, : that is, the lag operator applied to a set of observations
“packshifts” them by one time unit. For this reason, many
textbooks and articles expressas theB, or bacshift operator.
Note that the lag operator may be expressedas j =f1, WE
considerthe previous period’s lagub may expresany lag. For
quarterly dita, L*y, would express thealue ofy four quarters
ago, whle the lead ofy, L~*y;, would refer to the value of

four periods later. Aegatve power applied tone lag gemrates
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the lead, and just ang algebraic gantity raised to the zero
power is itself, "y, = v,. The lag ogrator alscsatisfies the
law of exponents, so that' L'y, = L'y = y_ij);  itis
commuative with the multiplication operator, and distributive
over the addition operator, so that(y; + z;) = Ly; + Lx;.

One must b cauious in using the difference operator to note
that/\/ refers to thg? difference: that is, the difference operat
apdied repeatedly. Thugdy; =y —y1.  anfi®y, = AAy, =
(Y — y—1) = (Ye—1 — Y1—2) = Yt — 2y1—1 + Y—2, and so on. One
may define\’ for any p&tive 5, bu this should not be mistaken
for, e.g.,yy — L*vy:, which is not th&ourth difference” ofy,. It
should be remembered that the difference operator is the discr
equivalent of‘é—?;, sdhat the second difference is the analog to
% : the acceleration aof.

In Stak, the time series operatofs., L. aAd  when
prefixing a varidle are tle first difference, lag, and lead
(forward) of the variale, respectively. The number of times that
the operator is to be applied may also be specified in this synta
so that one may saf4.y dp2.price tefer to the fourth lag
of y, or the second difference of the price level, respectively.

Lag polynomials

In working with these time series operators, we often emplo
lag polynomials; e.g. the difference operator may be definec
as(1 — L), afirst—ader polynomial in thdag operator, while
A* = (1 — L)*. This allows easier access to the definition of
the higher—order difference; since the expression L) may
be expaded as(1 — 2L + L?), it maimmediately be seen
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that A®y, = vy — 2y,_1 + y:—2, Where the coefficients of the
expanded lag polynomial appear in each term. As shorthand, v
often will write A(L) = (1 — ¢;L — ¢,L* — ¢3L?) as a finite—
order lag polyjomial The shorthand\(1) refers tothe steady
state representation, in which all lags are set to zdfad) =
(1 — > ;). We might also wite a factored polynomial, such as
(1 — )\1L) (1 — )\2[/) Ty = Ty — ()\1 + )\2) Ti—1 + A Aoxi_9.

The univariate dynamic modd

The simplest madel of a stehastic procesg; could be
written as a linear univariate dynamic model

Yt = O1Yt—1+ Golpp—2 + . + QY + €

which is ap™ orde stochasic difference equation with con-
stant coefficients. The process is said to be autoregressive,
since the value ofy depends on its own past values, as well
asthe innovation procesa This may be written in lag poly-
nomial notaion as¢ (L) y; = ¢; where the polynomial will be
(1 —¢1L+ ¢oL? + ... + ¢,L7) . We will consider this model
(or its more genml counterpart which incorporates a constant
term) as a AR(p) mocel of y;.

A dynamic bivariate mode

Let us congiler a dynamic model that contains two variables
an implementaon of the partial adjustment model (PAM) that
might be apped to the stock of consumer durables, or a firm’s
captal stock. The PAM contains a target value fpr  denajged
which in equilibrium will be realised. Due to adjustment costs,
ecnomic agents do not reach equilibrium immediately following
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a revison of the target value. Thus the law of motion fgr may
be expressed as
Ay =y —Y—1 =0 (y;‘ - yt—l) + €, (6] <1
where theparametew indiates the speed of adjustment; the
closer isd to unity, the more rapidly is equilibrium restored. The
modd may be rewritten as
ye =0y, + (L =06)y_y +e (1)
so that the current value @f is a convex combination of the
desired stock ahlast period’s alue. If we now déne thedesired
stock as depnding upon an exogenous factor y; = Aoz,  thal
may be substituted into (1) to yield, with some redefinition of
parameers,
(1 =7L) ye = Bozr + &

The resulting dynamic model has one lag on the dependent
variable and nodgs on the exjpinatory variable. The model
may be generalised, of course, to include richer dynamics in tr
determnation of the desired stock.

The autoregressive distributed lag (ADL) model*

The model agjiven dove is a special case of the autoregres
sive distrbuted lag (ADL) model. Wean express the general
ADL model asADL(p, q) :

p q
(1272-[/2)% = oo+ 1—26]-17 Ty + €
i=1

j=0
Y(L)y = ap+ B(L)z + &

1 This section is taken from Davidson and MacKinnon, Estimation and Inference in
Econometrics, section 19.4.
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wheree; is asumed to belD(0,02). If we consider the
ADL(1,1) special case,

Y = oo + VY1 + BoTt + B1Ti-1 + € (2)
we may note that Bmy models are nestedtiun it. For instance,
if v, = 8, = 0, we have a static regression. A univariadé?(1)
model fory sets3, = 3, = 0. A model in first differences is
a special caswith v, = 1 andg, = —f, ;g in that context
Implies the absence of a time trend. Since all of these models :
nested wthin the ADL(1,1) model, they may readily be tested
as restriions upon that me general form.

We may als consider thesteady state of this model, and the
long run dfect of x upony. By removingll time subsapts and
solving, we may derive that

Bo + i

y=—2" 4z, A= (3)
1= l—m
where the long run mitiplier contains the sum of the lag
coefficients, amplified by the terrfil — 71)_1 . The stability
condition requires thaty,| < 1. Iy and were measured in
logarithms (as often is the case in macroeconomic models) the
A will be a long—run elasticity.

An interesting feare of the ADL modeis that it may be
rewritten in many different forms without affecting the model’s
ahlity to explain the data, or changing the least squares estima
of the coefficiems of interest. For instance, we may rewrite (2)

as.
Ayt = ) -+ (71 — 1) Y1 -+ ﬁoajt + ﬁlajt_l + €t
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Ay = ap+ (71 — 1) g1+ BoAwy + (Bg + B1) T-1 + €
Ay = oo+ (77 — D) ye—1 — B1Azy + (B + B1) o + €
Ay, = ag+ (v — 1) (yr—1 — A1) + oAz + &

These eformulations are useful, in that they make it possibl
to receive direct point and interval estimates of, say, the sum
of the coefficiems on x (as in the second and third forms). The
most celebrated forns the last, which is known as the error
correcion form or error correction model (ECM), as defined
by Hendry and Aderson (1977) and Davidson et al. (DHSY,
1978). The ECM, aswe shallater discuss, expresses the revisior
of y in terms of the most recently observed disequilibrium in
the system—since the parentlm=si expression is the degree to
which the long run equilibrium of the system was perturbed in th
previoustime period. Unlike the other forms of the model, the
ECM form introduces a nonligarity into the model, but it merely
repregnts a linear model reparameterized in a nonlinear fashio
The aror correction term is implicitly present in any of the other
specifications, since its coefficient may be recovered from all ©
them. If the restrictiol\ = 1 Is imposed (which may be sensibl
If yand z are similar in magnitude), the ECM form becomes
linear in the parameters. This restriction, given the long run
multiplier, is equivalent to the restriction that + 3, + 3, = 1,
which may eadily be tested from any of the other forms of the
model.

An excdlent reference for these topics is Hendry, Pagan,
Sargan,Dynamic specification chapter 18 in thédandbook of
Econometrics, volume 1 (1984).
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Vector time series models

These ADL modk may be straightforwardly extended
to the multivariate context by considering as a vector of
several varialds, which then are determined by their own lags &
well as potenally influenced by the current and lagged values
of addtional variables. A pure autoregressive form of this
structure is thd” AR , ovector autoregression, which we will
discuss at legth later inthe course.The VAR model may be
augmented wh additional exogenous variables, in which case
the counterpart to the steady state of the univariate ADL mode
(3) may be defined in terms of a ma lag polynomial. In the
simplest case—that of a two—variable “pure VAR"—we have
v = (Y11, yor) . If we consider adurth—order VAR, we may write

(I —ILHL —TLL” — LY —ILLY) gy = p+ &
wherey is a 2x1 vectoof constant terms, and is a 2x1 vector
of error terms. This maa can @ rewrtten as
ALy = p+ €
Just as in the univariate case, we may evaluate the polynomial
A(1) in order to compute the sum of the lag weights.

We may dso consider a VAR with additional exogenous
variables—he multivariate analogue to the ADL model—in
which an addtional polynomial B(L)z; appears, so that now

A(L)yy = p+ B(L)xy + €

The long-run value of the system may be computed,

assuming that thed(L) polynomial is invertible, as

g = A(L) i+ A(L) ' B(L)z; + A(L) e,

10



which is somémes termed the final form of the system.
Thisin turn may be expressed as

y = p + C(L)xy + vy

where the polynmial C'(L) is a “ratioral lag”—a ratio of
two finite-order polynomials, which is an expression of infinite
order,C(L) = > :°, C;L'. The long-runelationship is given
by C(1) = A(1)"'B(1), which will only be defned whe the
matrix A(1) is non-singular. This long—run equilibrium may be
achieved iff the model is dynanatly stable; for a vector process,
the requirement is that the eigenvalues of the matrix polynomia
A(L) have modulus less than oireabsolute value. Sincd(L)
IS not in general a symmetric matrix, its eigenvalues will be
complex, so that the moduli of these complex quantities must b
evaluated (seet&a routinegenei gen ).

We will next take up the definitions of stationary and
nonstaionary randm variables.
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