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Stationary and nonstationary random variables

EC821: Time Series Econometrics, Spring 2003

Notes Section 2

Many economic time series are not plausibly characterized as
processes with a constant mean; expenditure, income, and price
series typically display a tendency to increase over time. Such
series are described as nonstationary. To discuss the concept of
stationarity, we must consider not only the first two moments of
the series—the mean and variance—but also the autocovariance
function, or autocorrelation function, of a single series, and the
cross–covariance (or cross–correlation) function of a pair of time
series. Recall that the covariance of and is defined as

. This definition is only
valid for timeseries with constant means; in that context, we may
also define as the cross–covariance of those series
with a –period lag: that is, we are considering the covariance
between at time and periods prior (or periods hence,
since the covariance function is symmetric).

Special cases of these definitions occur when and are
the same series; we then consider the autocovariance function
of the series , whose zero–order element is merely the variance
of the series, with other elements referring to the covariance
between the series’ values at one point in time versus another
point in time.

For stationary series—those with a constant mean and
variance—both of these concepts may be transformed from
covariances into correlations with appropriate scaling. You
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may recall that the simple correlation coefficient between
and is merely the covariance scaled by the product of the
standard deviations of the two variables. This implies that the
autocorrelation function will have unity as its zero–order term
(being the variance of scaled by the square of the standard
deviation of , that is, the variance), and the autocovariances
will be the elements of the sequence scaled by their variance:
the autocorrelations of the series, usually denoted . Like
the autocovariance function, the autocorrelation function is
symmetric, with the autocorrelation reflecting the relation
between and or .

With these building blocks in hand, we may consider the
concept of covariance stationarity, or second–order stationarity.
For a stochastic process to be covariance stationary, three
conditions must be satisfied: the process must have a constant
mean , a constant variance , and its autocovariance function
must not be a function of time. That is, , so that
translating the calculation of the autocovariance function along
the time axis does not affect its value: the process measured at
two different points in time, e.g. and , have an autocovariance
depending only on their temporal displacement . Thus,
we may speak of the order autocovariance, , without further
reference to time.

We may note that covariance stationarity is itself a weak
form of strict stationarity, which would require that the entire
distribution of the stochastic process is independent of the
measure of time. For a random variable distributed according
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to the Normal distribution, covariance stationarity implies
strict stationarity, since its distribution only depends on first
and second moments. In general, strict stationarity is a more
restrictive condition, and as it is difficult to test, covariance
stationarity will often suffice in applied work.

We may easily determine that a process such as a random
walk, or a random walk with drift, cannot be covariance
stationary. Such a process might be , where

is a zero mean random process with a constant variance, ,
and independent increments (and thus zero autocovariances). We
may rewrite the process as , where
is the fixed initial condition. The expectation of for
will be , , ..., ; thus the process has a
continuously changing mean (as given by the drift). Likewise,
the variance of the process for 1, 2, ... observations will be ,

, : that is, the variance increases linearly. This process is
clearly nonstationary, as it fails the first two conditions defining a
covariance stationary process.

A is a sequence of random variables,
If the index is taken as representing time, then

the stochastic process is a . The fundamental problem
in time series analysis is that we observe the realization of the
stochastic process only once. There are annual data, for example,
on the U.S. inflation rate for 1946–1995: 50 real values. But
this is only one possible outcome of the underlying stochastic
process for the inflation rate over that period. If we could have
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observed history many times over, we could assemble many
samples, each containing a possibly different string of 50 real
numbers, and take their average for each year. This would be
the of the series: the average across the states
of nature at any given calendar time. In reality, we can only
observe one such history. If the distribution for the inflation rate
remains unchanged–essentially, the concept of stationarity–then
the particular sequence, or time series, that we observe can be
considered as 50 different values from the same distribution. And
if the process is not too persistent–if it possesses the property of

–then each element of the sequence will bear some
information, and the time average over the elements of the single
realization we have will be consistent for the infeasible ensemble
mean. A stationary process is ergodic if it is asymptotically
independent: that is, if two random variables positioned far apart
in the sequence are almost independently distributed. This is
true, for instance, for the process a
white noise process and

Most aggregate time series such as GDP are not stationary
because they exhibit time trends. In some cases, financial series
are argued to be nonstationary on the grounds of nonconstant
variances. Many time series with a trend can be reduced to
stationary processes: for instance, a series from which a linear
trend has been removed, rendering it stationary, is said to be

(TS). Alternatively, a series may be differenced;
if the series is nonstationary, but its difference is stationary, then
the process is said to be (DS). As we shall
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see, much of the concern over unit roots in economics and finance
is related to this distinction between TS and DS processes.

A stochastic process is said to be if it satisfies
three properties: (a) for all ; (b) the variance of
is constant and thus independent, so that the process is said to be
homoskedastic; and (c) all autocorrelations , , equal
zero. This process is covariance stationary and ergodic—but note
that not all covariance stationary processes are white noise.

A closely related concept: independently and identically
distributed random variables, often labelled . The elements
of a stochastic process are said to be if they possess three
properties: (a) a constant not necessarily equal
to zero, for all (b) the variance of is constant and time–
independent: for all and (c) is distributed
independently of for all The latter is a stronger
condition than the equivalent condition in the definition of white
noise, since independence implies zero (auto)correlation but
not vice versa. However, if we add the assumption that is
distributed Normal, an assumption of zero autocorrrelations is
sufficient to imply independence. An sequence is stationary.

A process, combines a
white noise error sequence with the level of Since
the first difference of is also a white noise process, and
stationary; it should be clear that the level process is not
stationary. Its mean is time–varying; its variance is infinite,
as and its autocorrelations are nonzero, and die out
very slowly. A stochastic process is a if it satisfies

5



�

�

�

|

�

| |

�√ �

� �

+1

+1

+1 +1

2
1

2

2
1

2
1

t t t t

t

t

t t t

t t t t

t

t

t

t

t
�
	

[ � ] = �

= 0
=

(1)

= +

[ ]

[ ]
+

1
=

0

martingale difference
sequence

ARCH

E X X , .

X
E�

� X X

ARCH ,

g � 	g � � iid

iid
� E g

�
g. E g

g � 	g .

g
	 < . g

E g .
	 > ,

where is the information set, containing at
minimum the past history of the process. Since that conditional
expectation evaluates to for the random walk process, it is a
martingale (given that for the white noise innovation).
The difference is a

, which generally only requires uncorrelated (rather
than the more strictly independent) increments.

An example of a martingale difference process, often used
in analysing asset returns, is Engle’s autoregressive conditional
heteroskedastic ( ) process. A process is said to be an
ARCH process of order 1, or if it can be written

as where is with zero mean and

unit variance. Since the increments to the process are the
elements of , conditioned on its own past history is zero,
since that conditional expectation involves conditioning upon
the past history of Likewise, conditioned on the past
history of the process is merely So the conditional
second moment of the process (which is the conditional variance,
since the conditional mean is zero) is a function of the history
of the process. The process is strictly stationary and ergodic
if If is stationary, then the unconditional second
moment may be readily calculated as As we shall
see, if this model captures a characteristic of asset returns:
volatility clustering, so that large values (in absolute terms) are
followed by large values.

6


