
Unit root tests

EC821: Time Series Econometrics, Spring 2003

Notes Section 5

Given the distinction between trend-stationary and unit
root processes, it would seem to be very important to be
able to determine whether a particular timeseries which, for
instance, generally increases in value is being driven by some
underlying trend, or whether its evolution reflects a unit root in
its data generating process. Those who study macroeconomic
phenomena will want to know whether economic recessions
have permanent consequences for the level of future GDP
(as they would if GDP exhibits a unit root), or whether they
are merely deviations from a trend rate of growth, temporary
downturns that will be offset by the following recovery. Those
who are concerned with the stock market want to know whether
stock prices really do follow a random walk—i.e. exhibit unit
root behavior—rather than some complicated combination of
trends and cycles. If stock prices’ behavior reflect a unit root,
then “technical analysis” or “charting” is no more useful than
astrology. On the other hand, if there are no unit roots in stock
prices, all of the effort applied by stock analysts to studying the
behavior of these series should have a reward.

This concern has given rise to a battery of unit root tests:
statistical procedures that are designed to render a verdict as to
whether a given sample of timeseries data appears to imply the
presence of a unit root in that timeseries, or whether the series
may be considered stationary. In terms of our prior terminology,
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we are trying to discern whether the series exhibits (unit
root) or (stationary) behavior. It turns out that this is a fairly
difficult problem, from a statistical perspective. It might appear
sufficient to merely estimate an equation such as ,
modified to the form

(1)
using the available sample of data, and test the null hypothesis
that For various reasons, that turns out to be
problematic, in the sense that the distribution of the test statistic
is nonstandard under that null. The test for does not
have a distribution under the null hypothesis; even as
the distribution of this statistic will not be Under the
alternative hypothesis, the test statistic is well behaved, but under
the null—the point of interest—it follows the “Dickey–Fuller”
distribution rather than the Normal or The critical points on the
D–F distribution, as established by simulation, are considerably
larger than those of the equivalent whereas a value of –1.645
would be on the borderline of rejection at the 95% level for a
one–tailed test, the D-F critical value would be –1.961 for
1000.

Of course, the model (1) may not be the appropriate special
case of the autoregressive distributed lag model; we may want
to allow for an additional term which would become a constant
term in a stable autoregressive process, or a drift term in a
random walk process. Otherwise, we are specifying a stable
autoregressive process with a zero mean under the alternative
hypothesis, which may not be sensible (unless the series has
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already been demeaned). With that modification, we would test
(2)

which would then allow both a test for a unit root and
a joint test for a white noise process (an test for and

Note that the critical values for the test are not the same
as those that would be used in (1); for instance, the D–F critical
value for 1000 in this test is –2.864. One must also note
that this model would not be appropriate if there was an obvious
trend in the series, since the model under the alternative has no
mechanism to generate such a trend (as the RW–with–drift model
does under the null).

The most general form of the standard D–F test allows for
both a constant in the relationship and a deterministic trend:

(3a)
Such a model will allow for both a nonzero mean for (with

and trending behavior (with under the alternative
hypothesis, where The most likely null hypothesis is then
that of a RW–with–drift, so that under and
(no deterministic trend). This null could be rejected for three
reasons: (a) there could be no unit root, but a deterministic trend;
(b) there could be a unit root, but with a deterministic trend; or
(c) there might be no unit root nor deterministic trend. The most
general alternative is (a), for which an test is required (since
two restrictions on the parameter vector are implied under the
null). The statistic is calculated in the normal way, but the
distribution is again nonstandard, and tabulated values for the
“D–F distribution” must be consulted. More commonly, we
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consider a test on once again, the critical values are specific
to model (3a). For instance, the D–F critical value for
in this test is –3.408: larger yet than the critical values in the
constant–only model, which in turn exceed those for the original
white noise model.

Any of the forms of this test presume the existence of white
noise errors in the regression. If that is implausible, the test
will lose significant power. To cope with this issue, any of the
‘Dickey–Fuller” tests in practice are usually employed as the
“augmented Dickey–Fuller” test, or ADF test, in which a number
of lags of the dependent variable are added to the regression to
whiten the errors:

(4)
In this formulation, we consider an model as the baseline
model, rather than the model of the simple Dickey–Fuller
framework. The choice of appropriate lag length is likely to
depend on the frequency of the data; a general–to–specific
strategy (analogous to the Ng–Perron sequential procedure) or
an information criterion may also be used. We will discuss the
use of a modified AIC below.

The augmentation of the original D–F regression with lags
of the dependent variable is motivated by the need to generate
errors in that model, since an OLS estimator of the covariance
matrix is being employed. An alternative strategy for allowing
for errors that are not is that of Phillips (1987) and Phillips
and Perron (1988), known as the Phillips–Perron (PP) unit
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This command is not built in to Stata version 7, but can be readily installed by using
the command “ssc install dfgls”. The command is already installed in the version of Stata
running on fmrisc.bc.edu. It is available as part of official Stata in version 8.

root test. The PP test deals with potential serial correlation
in the errors by employing a correction factor that estimates
the long–run variance of the error process with a variant of
the Newey–West formula. Like the ADF test, use of the PP
test requires specification of a lag order; in the latter case, the
lag order designates the number of lags to be included in the
long–run variance estimate. The PP test allows for dependence
among disturbances of either AR or MA form, but have been
shown to exhibit serious size distortions in the presence of
negative autocorrelations. In principle, the PP tests should be
more powerful than the ADF alternative. The same critical values
are used for the ADF and PP tests.

Conventional unit root tests are known to lose power
dramatically against stationary alternatives with a low order
MA process: a characterization that fits well to a number of
macroeconomic time series. Consequently, these original tests
have been largely supplanted in many researchers’ toolkits
by improved alternatives. Along the lines of the ADF test, a
more powerful variant is the DFGLS test proposed by Elliott,
Rothenberg and Stock (ERS, 1996), described in Baum (2000,
2001), and implemented in Stata as command
performs the ERS efficient test for an autoregressive unit root.
This test is similar to an (augmented) Dickey-Fuller test, as
performed by , but has the best overall performance in
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terms of small-sample size and power, dominating the ordinary
Dickey-Fuller test. The test “has substantially improved
power when an unknown mean or trend is present” (ERS, p.813).

applies a generalized least squares (GLS) detrending
(demeaning) step to the :

For detrending, and are calcu-
lated by regressing onto

where with
, and is the lag operator. For demeaning,

and the same regression is run with The values of
are chosen so that “the test achieves the power envelope against
stationary alternatives (is asymptotically MPI

at 50 percent power” (Stock, 1994, p.2769; empha-
sis added). The augmented Dickey-Fuller regression is then
computed using the series:

where = .The option suppresses the
time trend in this regression.

Approximate critical values for the GLS detrended test are
taken from ERS, Table 1 (p.825). Approximate critical values
for the GLS demeaned test are identical to those applicable to
the no–constant, no–trend Dickey–Fuller test, and are computed
using the code.

The routine includes a very powerful lag selection
criterion, the “modified AIC” (MAIC) criterion proposed by Ng
and Perron (2001). They have established that use of this MAIC
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This command is not built in to Stata, but can be readily installed in any version of Stata
with access to the Web by using the “ssc install kpss” command. The command is already
installed in the version of Stata running on fmrisc.bc.edu.

criterion may provide “huge size improvements” (2001, abstract)
in the test. The criterion, indicating the appropriate lag
order, is printed on ’ output, and may be used to select the
test statistic from which inference is to be drawn.

It should be noted that all of the lag length criteria employed
by (the sequential test of Ng and Perron (1995), the
SC, and the MAIC) are calculated, for various lags, by holding
the sample size fixed at that defined for the longest lag. These
criteria cannot be meaningfully compared over lag lengths if the
underlying sample is altered to use all available observations.
That said, if the optimal lag length (by whatever criterion) is
found to be much less than that picked by the Schwert criterion,
it would be advisable to rerun the test with the option
specifying that optimal lag length, especially when using samples
of modest size.

An alternative test is that proposed by Kwiatkowski et al.
(1992), the so-called KPSS test, which has a null hypothesis of
stationarity (that is, ). It is also described in Baum
(2000) and implemented in Stata as command
performs the Kwiatkowski, Phillips, Schmidt, Shin (KPSS, 1992)
test for stationarity of a time series. The test may be conducted
under the null of either trend stationarity (the default) or level
stationarity. Inference from this test is complementary to that
derived from those based on the Dickey–Fuller distribution (such
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as , and ). The KPSS test is often
used in conjunction with those tests to investigate the possibility
that a series is fractionally integrated (that is, neither nor

): see Lee and Schmidt (1996).
The series is detrended (demeaned) by regressing on

yielding residuals Let the partial
sum series of be Then the zero-order KPSS statistic

/ For the
denominator is computed as the Newey-West estimate of the long
run variance of the series; see

Approximate critical values for the KPSS test are taken
from KPSS (1992). The routine includes two options
recommended by the work of Hobijn et al. (1998). An
automatic bandwidth selection routine has been added, rendering
it unnecessary to evaluate a range of test statistics for various
lags. An option to weight the empirical autocovariance function
by the Quadratic Spectral kernel, rather than the Bartlett kernel
employed by KPSS, has also been introduced. These options
may be used separately or in conjunction. It is in conjunction
that Hobijn et al. found the greatest improvement in the test:
“Our Monte Carlo simulations show that the best small sample
results of the test in case the process exhibits a high degree of
persistence are obtained using both the automatic bandwidth
selection procedure and the Quadratic Spectral kernel.” (1998,
p.14) The option specifies that the autocovariance function
is to be weighted by the Quadratic Spectral kernel, rather than
the Bartlett kernel. Andrews (1991) and Newey and West (1994)
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“indicate that it yields more accurate estimates of than other
kernels in finite samples.” (Hobijn et al., 1998, p.6) The
option specifies that the automatic bandwidth selection procedure
proposed by Newey and West (1994) as described by Hobijn et
al. (1998, p.7) is used to determine , in two stages. First,
the “a priori nonstochastic bandwidth parameter” is chosen
as a function of the sample size and the specified kernel. The
autocovariance function of the estimated residuals is calculated,
and used to generate as a function of sums of autocorrelations.
The to be used in computing the long-run variance,

, is then calculated as where =1/3 for the
Bartlett kernel and 1/5 for the Quadratic Spectral kernel.

Like the KPSS test, the test proposed by Leybourne and
McCabe (LMc, 1994, 1999) has a null of stationarity, and
a unit root alternative hypothesis. The difference lies in the
specification. The LMc test, like the ADF test, is parametric;
it posits a null of (that is, with
deterministic trend) with an alternative of The
LMc test is more cumbersome, as it requires estimation of this
nonlinear model under the null hypothesis, but it has been shown
to be more powerful than the KPSS test. Just as the PP test is a
semiparametric alternative to the ADF—that is, the PP test uses
a Newey–West long run estimate to deal with dependence in the
error process, rather than an explicit specification—the
KPSS test may be considered as a semiparametric alternative
to the LMc test. The tests differ “in how they take account
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Seasonal unit root tests

of autocorrelation in under H0” (1994, p.160): the LMc
test accounts for autocorrelation in a parametric manner by
including lagged terms in the first difference in the series, as does
the augmented Dickey-Fuller test. In contrast, the KPSS test
modifies the test nonparametrically, “in a manner similar to that
in which the Phillips-Perron test is a nonparametric adjustment of
the simple DF test.” (op.cit.) The authors find that “once does
not resemble white noise, the size of [the KPSS test] is likely
to be quite badly approximated by its asymptotic distribution,
even when the lag length is relatively high.” (1994, p.161) The
critical values for the LMc test are identical to those used for
KPSS.

The two families of unit root tests may be used in conjunction
to establish the nature of the data generating process for a given
timeseries, and in particular to signal the presence of fractional
integration in the series. If inference from the DFGLS test rejects
its null hypothesis of unit root behavior, or nonstationarity, while
the KPSS test also rejects its null, then we might conclude that
both and are rejected by the data. That sets the stage
for an alternative explanation of the timeseries’ behavior: that of
fractional integration, or long-range dependence, in which the
series may be characterized as neither nor

The implicit assumption in applying unit root tests to data
which have been deseasonalized is that the adjustment method
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does not affect inference on the stationarity of the time series.
However, several authors have called that assumption into
question in the case where the SA data have been generated by
a moving average filter. The most popular SA technique is the
US Census Bureau’s X-11 seasonal adjustment program, which
passes the data through a sequence of moving average filters.
Monte Carlo simulations show that the power of standard unit
root tests applied to SA data generated in this manner is reduced,
so that the null of nonstationarity is not rejected frequently
enough. Although one could deal with this issue by testing NSA
data, they are not always available. One can modify the standard

model that gives rise to the unit root test to

where for quarterly data, for monthly data, etc. If
then there is a unit root at the seasonal frequency,

and the difference of will remove it. Although this model
could be directly tested with the D–F methodology, it is likely
to be too simple for most applications, since it restricts the
dynamics of to depend only on seasonal differences. A natural
extension of this model would be

(5)
where is a standard autoregressive polynomial, and

is the seasonal polynomial.
One could have unit roots in either, both or neither of the
polynomials, and if they exist in both of the polynomials, both
an ordinary difference and a seasonal difference would have to
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be applied to render the resulting series stationary. The test for a
unit root in this context is that of Hylleberg et al. (HEGY, 1990).
For quarterly data, the test may be implemented within Stata via
the routine of Baum and Sperling ( ).

In this representation, the unit root at the quarterly frequency
can be written as

and the composite polynomial in (5) can be expanded about its
roots with a remainder term:

and this regression may be run as the equivalent of the D–F
regression. A test of corresponds to a test of the standard
unit root hypothesis against the alternative of stationarity. A
test of allows for the semi–annual root of versus
the stationary alternative. Seasonal unit roots at the quarterly
frequency correspond to Thus there will ne no
seasonal unit roots in the series if and either or

corresponding to a rejection of the null that and
the joint null that
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The Stata routine performs the test for seasonal unit
roots by estimating the four roots of the timeseries representation
and presents estimates of these roots as A joint test
for is also presented. Critical values are those
appropriate for T=100, taken from HEGY Table 1. Joint tests for

and with critical
values, are those presented by Ghysels et al. (1994). Critical
values for the case of muliplicative seasonality (see below) are
from tables 1a-c in Smith and Taylor (1998). Critical values are
linearly interpolated for sample sizes in the ranges (48,100) and
(100,200).

L:ike the standard D–F test, it may be necessary to augment
the HEGY test with additional lags of the dependent variable.
The option specifies the lag orders to be used
in augmenting the model with lags of the fourth difference of
the timeseries. Its default is zero. If sequential lags are specified
starting with 1, HEGY4 automatically conducts a sequential
t-test to determine the optimal lag length and optimal lags to be
included in the auxiliary regression. It may also be desirable
to include deterministic terms such as a constant, trend and in
this case seasonal dummy variables in the model. In the
routine, the option may take on values

or , specifying the process to
be tested. The default, as suggested by HEGY and Ghysels et al.
(1994), is , indicating that a set of 3 seasonal dummies plus
constant are to be included in the regression. specifies that
no deterministic variables are to be included; specifies

13
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Testing for unit roots with structural breaks
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only a constant. specifies that a trend is to be included
along with a constant term. specifies that a trend is
to be included along with seasonal dummies and a constant term.

specifies that seasonal intercepts (the case of multiplicative
seasonality, recommended by Smith and Taylor (1998)) are to be
included along with seasonal dummies and a constant term.

The HEGY model may also be defined for monthly data
(although the algebra in that case is rather menacing); a Stata
routine for that purpose is under development.

A well known problem in the unit root literature is the
potential for a series which exhibits structural shifts to fail to
reject the unit root null. In the simplest case, a series which
undergoes a mean shift is not covariance stationary, but could be
made so if regressed on a dummy that identified the shift period
(zero before, one after). Early work along these lines was that
of Perron (1989) and Perron and Vogelsang (1992). If there is a
known break in a sample of observations at point we may
consider three extensions of the random–walk–with–drift model,
where is considered to be in logs, and no further dynamics are
present:

where in the period and for
The first model considers a level shift (jump) at time
the second model considers a change in the growth
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rate of the series effective at time and the third model
considers the possibility that both occur. The dummy is
an “impulse” dummy, picking out the single period of the shift,
while is a shift dummy, which changes the underlying
slope of the stochastic trend. The alternative hypotheses to each
of these models are, respectively:

where and both equal zero if
if and if Since there is

drift in the first and third models under the null hypothesis, the
alternative includes a deterministic trend. In the first model, the
null is a unit root with level change; under the alternative, we
have a trend stationary series with a change in the intercept to

In the second model, the null hypothesis is a unit root
with a change in the drift, and the alternative is a trend stationary
series with a change in the slope to In the third model,
the null is a unit root series with change in both level and drift,
and the alternative is a trend stationary series with changes in
the intercept and slope. In practice, further dynamics may be
necessary to whiten the residuals.

Perron suggests the use of two procedures for modeling this
process, depending on whether adjustment following the break
is assumed to be instantaneous or gradual. The former is known
as the (additive outlier) case, where there is a single effect
at the breakpoint. Alternatively, the (innovational outlier)
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model may be applied, which allows for a gradual adjustment of
the series following the break.

The original derivation of these tests was performed
conditional on a known breakpoint. More realistically, we may
not know when (or even if) such a breakpoint exists. If the
tests are performed conditional on an a priori breakpoint, they
may not have maximal power. More recent derivations of unit
root tests in the presence of structural change have focused on
unknown breakpoints, and in some cases on multiple structural
breaks and the methods needed to consistently detect them.
For instance, Perron (1997) presents a procedure for locating
the single breakpoint with highest likelihood by considering
all possible breakpoints in the interior of the sample, selecting
that point which maximizes the absolute value of the statistic
for the structural change term. That article presents asymptotic
critical values for the unit root test statistic in the presence of a
single breakpoint.

A paper using this methodology to examine the impact of
structural breaks on unit root testing is Baum et al. (1999), which
considers the possibility that common findings of nonstationarity
in real exchange rates may be an artifact of structural breaks
in the series. In the end, they conclude that unit roots are
present even when structural breaks (and the potential for
fractional integration) are accounted for. The unit-root test
statistics forthcoming from the and models will account
for one-time level shifts which might otherwise be identified
as departures from stationarity. However, the behavior of
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real exchange rate series over our sample period may not be
adequately characterized by a single shift; as Lothian (1998)
has noted, US dollar-based real exchange rates appear to
have exhibited two shifts in mean over the 1980-1987 period,
approximately reverting to their pre-1980 level after 1987. In
these circumstances, allowing for a single level shift will not
suffice. The Perron-Vogelsang methodology has been extended to
double mean shifts by Clemente et al. (1988), who demonstrate
that a two-dimensional grid search for breakpoints ( and
may be used for either the or models, and provide critical
values for the tests. In this context, the model involves the
estimation of:

(6)
and subsequently searching for the minimal ratio for the
hypothesis in the model:

for
For the model, the modified equation to be estimated

becomes:

(7)
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These tests customarily are applied to a trimmed sample; we trimmed 5% of the sample
from each end when searching for the breakpoints.

(8)

for with a search for the minimal ratio for
the hypothesis

Code to estimate unit root tests, allowing for one or two
structural breaks in either an or context, is available
for Stata as routines , and

. As it has not yet been documented, it is not in the
archive, but it is available from the instructor on request.
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