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EC821: Time Series Econometrics, Spring 2003

Notes Section 6

Consider the system

with and each standard Normal variates. There
are no dynamics in the DGP, and we assume there is no
contemporaneous correlation between the two error processes. In
this case, OLS will find unbiased and consistent estimates of
and despite the fact that the variance of is not bounded.
and are said to be cointegrated, or to possess a cointegrating
relationship. will be since it is composed of an
variable plus a stationary error.

On the other hand, consider two independent random walks,
and and the regression of upon In that regression,

the true slope coefficient is zero, since there is no relationship
whatsoever between these two integrated processes. But the
regression (run either way) will yield a nonzero estimate of the
slope coefficient, and the significance of that coefficient will not
diminish with sample size. Indeed, the probability of rejecting
the (true) null will increase with sample size. In a simple Monte
Carlo experiment, the rejection rate for the statistic is 72% in
samples of size 50, but 80% for and 91% for
whereas the rejection rate should be 10%. Furthermore, of
such a regression becomes a random variable in a regression of
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unrelated nonstationary variables, and the likelihood of finding a
sizable in that context is quite sizable.

Demonstrably, OLS does not yield consistent estimates of
the true slope parameter in this instance: the case of a

, as defined by Granger and Newbold (1974). A
theoretical explanation of this phenomenon was presented by
Phillips (1986). The problem of spurious regressions appears
with variables, so the determination of unit root processes is
essential. Furthermore, the problem will not arise if the series are
cointegrated, so that determining whether cointegration exists is
important as well.

What is cointegration? The notion that two (or more)
nonstationary processes may be following the same stochastic
trend, or may share an underlying common factor. Although
and are both a linear combination of those nonstationary
variables may exist which is itself The coefficients in that
linear combination form the cointegrating vector, which will
have one element normalized to unity, since the CI vector is
defined up to a factor of proportionality. Additionally, the vector
may include a constant, to allow for unequal means of the two
variables, so

and the notion is that will be a stationary process in the
presence of cointegration.

The concept may be extended to higher orders of integration,
and more than two variables. If and are each then
a linear combination of them might be , or even We
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The Engle–Granger approach

noncointegration

can speak of series as being cointegrated where
is the common order of integration of the variables, and is
the reduction in the order of integration of the cointegrating
combination. Thus, the case above would be with two

variables forming a combination one order lower, of A
linear combination of variables is not a spurious regression
if it is stationary.

The original approach to testing for cointegration is that of
Engle and Granger (1987). In this classic paper, they demonstrate
that if one regresses an variable upon another variable
(in what is termed a “balanced” regression, in which all variables
share the same order of integration), the residuals from that
regression may then be subjected to a unit root test. The null
hypothesis, in this case, is that of : that is,
failing to reject a unit root in the errors in a Dickey-Fuller style
test will yield the conclusion of nonCI, whereas rejection in
favor of stationarity in the error process will be evidence of a
cointegrating relationship among the variables. Stock (1987)
has shown that the OLS estimates in this regression have the
desirable property of “superconsistency”—that is, they are not
only consistent estimates of the underlying parameters of the
DGP, but they converge on the population values more quickly
than OLS estimates in the context of stationary regressors. The
ADF-type test applied in this instance will not contain a constant
term, since the OLS residuals will be mean zero with a constant
included in the CI regression. The critical values in this case
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Cointegration and the error correction model

are not the same as those of the standard D–F distribution, since
the timeseries being tested is a generated series. They are larger
negative values than those provided for the D–F distribution, and
like D–F critical values, are obtained by simulation. Note also
that the regression could be run with either variable on the left
hand side, since it is not a structural relationship; if a CI vector
exists, it may be renormalized on the other variable. If the
in the CI regression is low, however, (less than 0.8), then the
inference may differ depending upon normalization.

How would one operate with more than two variables? One
may still form a cointegrating vector among three or more
series, and estimate the CI regression. As in the two–variable
case, the estimates of the CI coefficients will be superconsistent.
However, with more than two variables, the weakness of the E-G
approach emerges: the test can determine whether a CI vector
exists that yields stationary errors, but it will generate only one
of the possible multiple CI vectors that could exist in this setting.
When there are three variables, for instance, they could all be
driven by the same common factor (stochastic trend), or their
behavior could reflect two common factors–coinciding with the
existence of two CI vectors. The E–G approach is not capable
of finding more than one CI vector; other approaches, such as
Johansen and Juselius’ ML approach, can do so. (Of course, it
could be that there are zero common factors underlying these
three variables’ dynamics, in which case the E–G approach will
correctly reflect the absence of CI among them).
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A simple error correction model (ECM) may be written as

In this formulation, also known as a partial adjustment scheme,
there is adjustment of toward a target which depends on
the lagged disequilibrium. Imagine that there is a constant ratio,
in equilibrium, between consumption and income (in logs) and

so that Then a measure of disequilibrium may be
written as An error correction scheme might
be written as

where consumers react to last period’s disequilibrium by revising
their consumption. Substituting in, we have

where the parenthesized quantity is the error correction term.
Consumption will change if income changes, or if there was
a disequilibrium in the relationship last period. (Note that the
proportionality factor has been subsumed in the constant
term of this relationship; we could, instead, leave it in the error
correction term as a coefficient on ). The coefficient has
limits since for stability one should not overadjust
to the disequilibrium (which would correspond to closing the
entire gap this period) nor to fail to adjust at all (a coefficient
of zero), let alone a positive coefficient (which would drive
away from its equilibrium relationship). The ECM contains both
the short–run mechanism by which consumption will adjust to
current changes in income, as well as the long–run adjustment to
equilibrium. The relative importance of short-run and long-run
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fluctuations in consumption will be governed by the relative
magnitudes of the and coefficients. Incorporating the
equilibrium coefficient in the relationship, we have

(1)
corresponding to the “levels” or static relationship

(2)
If these variables are both this relationship may be
(super)consistently estimated by OLS, and the residuals tested
for noncointegration. If the null of nonCI is rejected, then the
relationship (1) may be estimated, replacing the unknown
with the lagged residuals from (2), by OLS.

If and are both and cointegrated
and neither has a trend in the mean, then by the Granger
Representation Theorem (Granger and Weiss, 1983) there will
always exist an error correction representation of the form

(3)

where and
with the sequences white noise. It must be so that

that is, the lagged disequilibrium term must appear in at least
one of the equations. In general, it will appear in both. Note that
this model is essentially a VAR augmented by the error correction
term. The transformation of the dynamic model into this form
illustrates that a regular VAR in the differences of these variables
would be misspecified, in that it would omit the error correction
term. That term is required to fully specify the dynamics of
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Multiple cointegrating relationships

the model. In its absence, the reversion of these variables to a
long–run equilibrium is not modeled.

These equations are “balanced” in that if the levels variables
are their differences are If the variables are
then the error correction term will be and all terms in
(3) are If these two variables are and then
knowledge of the one variable helps to forecast the other—at
least in one direction. Having established cointegration as a
long-run property of the data, it is natural to think of an ECM
as an appropriate way of capturing the dynamic adjustments of
these variables to the long run.

Consider a set of time series variables. If they are each
(trend–)stationary, a VAR may be employed to estimate their
joint evolution and interdependence. If one or more of the
variables in the VAR are nonstationary, it would be inappropriate
to estimate the VAR in levels. However, it might also be
inappropriate to estimate a VAR in differences, even in the case
where all variables in the VAR possess unit roots. If there are
cointegrating relationships among the level variables, the proper
representation will be the error correction model (ECM), and
the VAR in differences may be seen to be a misspecified version
of that model (excluding, as it does, the error correction term).
The VAR in differences is also uninformative about the long–run
behavior of the series, since it only expresses their short–run
paths of adjustment, without any link to the long–run equilibrium
relationships among the variables. The error correction model
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explicitly provides that link, capturing the short–run adjustment
toward the long–run equilibria.

When there are more than two variables in the set, there
may be multiple cointegrating relationships among them. In a
two–variable system, the variables either form a cointegrating
combination or they do not. In a three–variable system, there
may be zero, one, or two cointegrating vectors. If zero, then
these are three independent random walks. If there are two CI
vectors, the Engle–Granger procedure will locate one of them,
but it is incapable of identifying the multiplicity, or of estimating
a second relationship. Likewise, for higher–order systems of
order , there may be up to CI vectors defining long–run
equilbria among the variables.

The most common methodology employed to evaluate
multiple cointegrating relationships is that of Johansen (1988)
and Johansen and Juselius (1990), which is based on the
estimation of a –order VAR in the variables. The VAR in the

–vector is:

(4)
where is a –vector of deterministic terms, such as

a constant, trend and seasonal dummies. The VAR may be
reparameterized into an ECM:

(5)
No assumption is made about the rank of . In the
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decomposition , and are x matrices. We seek
to determine whether any columns of (that is, rows of ) are
statistically indistinguishable from zero vectors. The existence
of cointegrating vectors reduces the rank of by : that
is, if there are cointegrating relationships among the variables,
then there will be nonzero eigenvalues in the dynamic system,
and zero eigenvalues. The decomposition will then relate

where and are both x matrices. If the CI rank is
full, that is, , then the VAR is stationary in the levels. If the
rank is zero, then there is no implied long run, and the VAR may
be safely reformulated in first differences.

The Johansen methodology provides inference on the
number of nonzero eigenvalues, or CI relationships, by setting
up an eigenvalue problem derived from the levels and differences
of the variables. The eigenvalues are ordered, from largest to
smallest. The space spanned by the largest eigenvalues is the
–dimensional cointegrating space. If , is x 1, and is

the eigenvector corresponding to the largest eigenvalue. If ,
is x 2; the first column is as before, and the second column is

the eigenvector corresponding to the second largest eigenvalue.
Two statistics are defined in Johansen’s work to determine

the CI rank: first, the trace statistic,

(6)

which allows for the test of : the rank of is r, against
the alternative that the rank of is . A large value of the trace
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statistic is evidence against : that is, with , a value
of the trace statistic greater than the appropriate critical value
allows us to reject in favor of . The test may then be
repeated for , and so on.

Alternatively, the statistic may be used:

(7)
This test allows for the comparison of a CI rank of against

the alternative of a CI rank of . This test also may then be
repeated for larger values of until one fails to reject the null
hypothesis.

The distribution of both statistics is nonstandard, and
depends on nuisance parameters in . Critical values have
been tabulated by Johansen and Osterwald–Lenum, and are
reproduced in the textbook. Research by Reimers and Cheung
and Lai (1993) have identified small–sample biases in the
tabulated values of these test statistics, and they recommend
applying a small–sample adjustment.

Extensions of the Johansen methodology include tests of
various restrictions on the CI vectors: either zero (exclusion)
restrictions, indicating that certain variables should not appear
in certain of the equilibrium relationships, or restrictions on
parameters’ values, such as those forthcoming from theory (e.g.
purchasing power parity not only specifies a long run relationship,
but indicates that the coefficients in the CI combination should
be (1, 1, -1)).
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