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1. Fractionally integrated timeseries and ARFIMA mod-
elling
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1

This presentation of ARFIMA modelling draws heavily from Baum and Wiggins (2000).

Christopher F Baum Department of Economics
Boston College baum@bc.edu

January 8, 2003

The model of an autoregressive fractionally integrated moving average process
of a timeseries of order , denoted by ARFIMA , with mean ,
may be written using operator notation as

(1.1)

where is the backward-shift operator, = 1 - - .. - , = 1 +
+ ... + , and is the fractional differencing operator de�ned by

(1.2)

with ( ) denoting the gamma (generalized factorial) function. The parameter
is allowed to assume any real value. The arbitrary restriction of to inte-
ger values gives rise to the standard autoregressive integrated moving average
(ARIMA) model. The stochastic process is both stationary and invertible if
all roots of and lie outside the unit circle and . The process
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1.1. Approaches to estimation of the ARFIMA model

is nonstationary for , as it possesses in�nite variance, i.e. see Granger
and Joyeux (1980).
Assuming that , Hosking (1981) showed that the autocorrelation

function, , of an ARFIMA process is proportional to as . Con-
sequently, the autocorrelations of the ARFIMA process decay hyperbolically to
zero as in contrast to the faster, geometric decay of a stationary ARMA
process. For , diverges as , and the ARFIMA
process is said to exhibit long memory, or long-range positive dependence. The
process is said to exhibit intermediate memory (anti-persistence), or long-range
negative dependence, for . The process exhibits short memory
for , corresponding to stationary and invertible ARMA modeling. For

the process is mean reverting, even though it is not covariance sta-
tionary, as there is no long-run impact of an innovation on future values of the
process.
If a series exhibits long memory, it is neither stationary ( ) nor is it a unit

root ( ) process; it is an process, with a real number. A series exhibit-
ing long memory, or persistence, has an autocorrelation function that damps
hyperbolically, more slowly than the geometric damping exhibited by �short
memory� (ARMA) processes. Thus, it may be predictable at long horizons.
An excellent survey of long memory models�which originated in hydrology, and
have been widely applied in economics and �nance�is given by Baillie (1996).

There are two approaches to the estimation of an ARFIMA model:
exact maximum likelihood estimation, as proposed by Sowell (1992), and semi-
parametric approaches. Sowell�s approach requires speci�cation of the and
values, and estimation of the full ARFIMA model conditional on those choices.
This involves all the attendant difficulties of choosing an appropriate ARMA
speci�cation, as well as a formidable computational task for each combination
of and to be evaluated. We �rst describe semiparametric methods, in which
we assume that the �short memory� or ARMA components of the timeseries are
relatively unimportant, so that the long memory parameter may be estimated
without fully specifying the data generating process.
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This discussion is drawn from Baum and Room (2000).

1.2. Semiparametric estimators for I(d) series

1.2.1. The Lo Modi�ed Rescaled Range estimator

performs Lo�s (1991) modi�ed rescaled range (R/S, �range over stan-
dard deviation�) test for long range dependence of a time series. The classical
R/S statistic, devised by Hurst (1951) and Mandelbrot (1972), is the range of
the partial sums of deviations of a timeseries from its mean, rescaled by its
standard deviation. For a sample of values ,

where is the maximum likelihood estimator of the standard deviation of The
�rst bracketed term is the maximum of the partial sums of the �rst deviations
of from the full-sample mean, which is nonnegative. The second bracketed
term is the corresponding minimum, which is nonpositive. The difference of
these two quantities is thus nonnegative, so that Empirical studies
have demonstrated that the R/S statistic has the ability to detect long-range
dependence in the data.
Like many other estimators of long-range dependence, though, the R/S sta-

tistic has been shown to be excessively sensitive to �short-range dependence,�
or short memory, features of the data. Lo (1991) shows that a sizable
component in the data generating process will seriously bias the R/S statistic.
He modi�es the R/S statistic to account for the effect of short-range dependence
by applying a �Newey-West� correction (using a Bartlett window) to derive a
consistent estimate of the long-range variance of the timeseries. For
the denominator of the statistic is computed as the Newey-West estimate of the
long run variance of the series. If is set to zero, the test performed is
the classical Hurst-Mandelbrot rescaled-range statistic. Critical values for the
test are taken from Lo, 1991, Table II.
Inference from the modi�ed R/S test for long range dependence is comple-

mentary to that derived from that of other tests for long memory, or fractional
integration in a timeseries, such as , , and .
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1.2.2. The Geweke�Porter-Hudak log periodogram regression estima-
tor
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performs the Geweke and Porter-Hudak (GPH, 1983) semiparametric
log periodogram regression, often described as the �GPH test,� for long memory
(fractional integration) in a timeseries. The GPH method uses nonparametric
methods�a spectral regression estimator�to evaluate without explicit speci-
�cation of the �short memory� (ARMA) parameters of the series. The series
is usually differenced so that the resulting estimate will fall in the [-0.5, 0.5]
interval.
Geweke and Porter-Hudak (1983) proposed a semiparametric procedure to

obtain an estimate of the memory parameter of a fractionally integrated
process in a model of the form

(1.3)

where is stationary with zero mean and continuous spectral density
The estimate is obtained from the application of ordinary least squares to

(1.4)

computed over the fundamental frequencies . We
de�ne as the discrete Fourier transform (dft) of
the timeseries , as the periodogram, and

Ordinary least squares on (1.4) yields

(1.5)

Various authors have proposed methods for the choice of , the number of
Fourier frequencies included in the regression. The regression slope estimate is
an estimate of the slope of the series�p ower spectrum in the vicinity of the zero
frequency; if too few ordinates are included, the slope is calculated from a small
sample. If too many are included, medium and high-frequency components of the
spectrum will contaminate the estimate. A choice of , or = 0.5 is often
employed. To evaluate the robustness of the GPH estimate, a range of power
values (from 0.40�0.75) is commonly calculated as well. Two estimates of the
coefficient�s standard error are commonly employed: the regression standard
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1.2.3. The Phillips Modi�ed GPH log periodogram regression estima-
tor

error, giving rise to a standard -test, and an asymptotic standard error, based
upon the theoretical variance of the log periodogram of . The statistic based
upon that standard error has a standard normal distribution under the null.

computes a modi�ed form of the GPH estimate of the long memory
parameter, , of a timeseries, proposed by Phillips (1999a, 1999b). Phillips
(1999a) points out that the prior literature on this semiparametric approach does
not address the case of or a unit root, in (1.3), despite the broad interest
in determining whether a series exhibits unit-root behavior or long memory
behavior, and his work showing that the estimate of (1.5) is inconsistent when

with exhibiting asymptotic bias toward unity. This weakness of the GPH
estimator is solved by Phillips� Modi�ed Log Periodogram Regression estimator,
in which the dependent variable is modi�ed to re�ect the distribution of under
the null hypothesis that . The estimator gives rise to a test statistic for

which is a standard normal variate under the null. Phillips suggests
that deterministic trends should be removed from the series before application
of the estimator. Accordingly, the routine will automatically remove a linear
trend from the series. This may be suppressed with the option. The
comments above regarding apply equally to .
Phillips� (1999b) modi�cation of the GPH estimator is based on an exact

representation of the dft in the unit root case. The modi�cation expresses

and the modi�ed dft as

with associated periodogram ordinates (1999b, p.9).
He notes that both and, thus, are observable functions of the
data. The log-periodogram regression is now the regression of on

De�ning and the modi�ed
estimate of the long-memory parameter becomes

(1.6)
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1.2.4. Robinson�s Log Periodogram Regression estimator

Phillips proves that, with appropriate assumptions on the distribution of the
distribution of follows

(1.7)

so that has the same limiting distribution at as does the GPH estimator
in the stationary case so that is consistent for values of around unity. A
semiparametric test statistic for a unit root against a fractional alternative is
then based upon the statistic (1999a, p.10):

(1.8)

with critical values from the standard normal distribution. This test is consistent
against both and fractional alternatives.

computes the Robinson (1995) multivariate semiparametric estimate
of the long memory (fractional integration) parameters, , of a set of
timeseries, , with . When applied to a set of timeseries,
the parameter for each series is estimated from a single log-periodogram
regression which allows the intercept and slope to differ for each series. One
of the innovations of Robinson�s estimator is that it is not restricted to using
a small fraction of the ordinates of the empirical periodogram of the series:
that is, the reasonable values of need not exclude a sizable fraction of
the original sample size. The estimator also allows for the removal of one or
more initial ordinates, and for the averaging of the periodogram over adjacent
frequencies. The rationales for using non-default values of either of these options
are presented in Robinson (1995).
Robinson (1995) proposes an alternative log-periodogram regression estima-

tor which he claims provides �modestly superior asymptotic efficiency to �
( being the Geweke and Porter-Hudak estimator) (1995, p.1052). Robin-
son�s formulation of the log-periodogram regression also allows for the formula-
tion of a multivariate model, providing justi�cation for tests that different time
series share a common differencing parameter. Normality of the underlying
time series is assumed, but Robinson claims that other conditions underlying
his derivation are milder than those conjectured by GPH.
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1.3. Maximum likelihood estimators of ARFIMA models
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We present here Robinson�s multivariate formulation, which applies to a sin-
gle time series as well. Let represent a dimensional vector with element

. Assume that has a spectral density matrix
with element denoted as The diagonal element, is the
power spectral density of For and assume that

as for The periodogram of is then
denoted as

(1.9)

Without averaging the periodogram over adjacent frequencies nor omission of
initial frequencies from the regression, we may de�ne The
least squares estimates of and are given by

(1.10)

where , and
for periodogram ordinates. Standard errors for and for a test of the re-
striction that two or more of the are equal may be derived from the estimated
covariance matrix of the least squares coefficients. The standard errors for the
estimated parameters are derived from a pooled estimate of the variance in
the multivariate case, so that their interval estimates differ from those of their
univariate counterparts. Modi�cations to this derivation when the frequency-
averaging ( ) or omission of initial frequencies ( ) options are selected may be
found in Robinson (1995).

The theory and implementation of Sowell�s exact maximum likelihood estimator
of the model using Ox is described in Doornik and Ooms
(1999).
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1.4. Applications

Econometric Analysis of Financial Time Series

Examples of the application of the lomodrs and classical rescaled range estima-
tors:
Data from Terence Mills� on

returns from the annual S&P 500 index of stock prices, 1871-1997, are analyzed.

8

. use http://fmwww.bc.edu/ec-p/data/Mills2d/sp500a.dta

. lomodrs sp500ar

Lo Modified R/S test for sp500ar

Critical values for H0: sp500ar is not long-range dependent

90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]

Test statistic: .780838 (1 lags via Andrews criterion) N = 124

. lomodrs sp500ar, max(0)

Hurst-Mandelbrot Classical R/S test for sp500ar

Critical values for H0: sp500ar is not long-range dependent

90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]

Test statistic: .799079 N = 124

. lomodrs sp500ar if tin(1946,)

Lo Modified R/S test for sp500ar

Critical values for H0: sp500ar is not long-range dependent



Econometric Analysis of Financial Time Series

For the full sample, the null of stationarity may be rejected at 95% using
either the Lo modi�ed R/S statistic or the classic Hurst-Mandelbrot statistic.
For the postwar data, the null may not be rejected at any level of signi�cance.
Long-range dependence, if present in this series, seems to be contributed by
pre-World War II behavior of the stock price series.
Examples of , , and estimators:
Data from Terence Mills� on

UK FTA All Share stock returns (ftaret) and dividends (ftadiv) are analyzed.

9

90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]

Test statistic: 1.08705 (0 lags via Andrews criterion) N = 50

gphudak modlpr roblpr

. use http://fmwww.bc.edu/ec-p/data/Mills2d/fta.dta

. tsset
time variable: month, 1965m1 to 1995m12

. gphudak ftaret,power(0.5 0.6 0.7)

GPH estimate of fractional differencing parameter
------------------------------------------------------------------------------

Asy.
Power Ords Est d StdErr t(H0: d=0) P>|t| StdErr z(H0: d=0) P>|z|
------------------------------------------------------------------------------
.50 20 -.00204 .160313 -0.0127 0.990 .187454 -0.0109 0.991
.60 35 .228244 .145891 1.5645 0.128 .130206 1.7529 0.080
.70 64 .141861 .089922 1.5776 0.120 .091267 1.5544 0.120

------------------------------------------------------------------------------

. modlpr ftaret, power(0.5 0.55:0.8)

Modified LPR estimate of fractional differencing parameter
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------------------------------------------------------------------------------
Power Ords Est d Std Err t(H0: d=0) P>|t| z(H0: d=1) P>|z|
------------------------------------------------------------------------------
.50 19 .0231191 .139872 0.1653 0.870 -6.6401 0.000
.55 25 .2519889 .1629533 1.5464 0.135 -5.8322 0.000
.60 34 .2450011 .1359888 1.8016 0.080 -6.8650 0.000
.65 46 .1024504 .1071614 0.9560 0.344 -9.4928 0.000
.70 63 .1601207 .0854082 1.8748 0.065 -10.3954 0.000
.75 84 .1749659 .08113 2.1566 0.034 -11.7915 0.000
.80 113 .0969439 .0676039 1.4340 0.154 -14.9696 0.000

------------------------------------------------------------------------------

. roblpr ftaret

Robinson estimates of fractional differencing parameter
-------------------------------------------------------
Power Ords Est d Std Err t(H0: d=0) P>|t|
-------------------------------------------------------
.90 205 .1253645 .0446745 2.8062 0.005

-------------------------------------------------------

. roblpr ftap ftadiv

Robinson estimates of fractional differencing parameters
Power = .90 Ords = 205
-------------------------------------------------------------
Variable | Est d Std Err t P>|t|
-----------------+-------------------------------------------
ftap | .8698092 .0163302 53.2640 0.000
ftadiv | .8717427 .0163302 53.3824 0.000
-------------------------------------------------------------
Test for equality of d coefficients: F(1,406) = .00701 Prob > F = 0.9333

. constraint define 1 ftap=ftadiv

. roblpr ftap ftadiv ftaret, c(1)
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Robinson estimates of fractional differencing parameters
Power = .90 Ords = 205
-------------------------------------------------------------
Variable | Est d Std Err t P>|t|
-----------------+-------------------------------------------
ftap | .8707759 .0205143 42.4473 0.000
ftadiv | .8707759 .0205143 42.4473 0.000
ftaret | .1253645 .0290116 4.3212 0.000
-------------------------------------------------------------
Test for equality of d coefficients: F(1,610) = 440.11 Prob > F = 0.0000

The GPH test, applied to the stock returns series, generates estimates of
the long memory parameter that cannot reject the null at the ten percent level
using the t-test. Phillips� modi�ed LPR, applied to this series, �nds that
can be rejected for all powers tested, while (stationarity) may be rejected
at the ten percent level for powers 0.6, 0.7, and 0.75. Robinson�s estimate for
the returns series alone is quite precise. Robinson�s multivariate test, applied to
the price and dividends series, �nds that each series has . The test that
they share the same cannot be rejected. Accordingly, the test is applied to
all three series subject to the constraint that price and dividends series have a
common , yielding a more precise estimate of the difference in parameters
between those series and the stock returns series.
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