A test for long-range dependence in a time series

Christopher F. Baum, Boston College, baum@bc.edu
Taüri Room, Boston College, room@bc.edu

Abstract: This insert implements the Hurst–Mandelbrot rescaled range statistic and the Lo (1991) modified rescaled range statistic to test for long-range dependence in a time series.

Keywords: fractional integration, long memory, rescaled range, time series.

Syntax

lomodrs varname [if exp] [in range] [, maxlag(#)]

This test is for use with time-series data; you must tsset your data before using lomodrs; see [R] tsset. varname or varlist may contain time-series operators; see [U] Time-series varlists.

Options

maxlag(#) specifies the maximum lag order for the test. By default, maxlag is calculated from the sample size and the first-order autocorrelation coefficient of the varname using the data-dependent rule of Andrews (1991), assuming that the data-generating process is AR(1). If maxlag is set to zero, the test performed is the classical Hurst–Mandelbrot rescaled-range statistic.

Description

The model of an autoregressive fractionally integrated moving average process of a time series of order \(p, d, q \), denoted by ARFIMA \((p, d, q)\), with mean \(\mu \), may be written using operator notation in terms of a white noise series \(\epsilon \) having variance \(\sigma^2_\epsilon \) as

\[
\Phi(L)(1 - L)^d(y_t - \mu) = \Theta(L)\epsilon_t
\]

where \(L \) is the backward-shift operator, \(\Phi(L) = 1 - \phi_1L - \cdots - \phi_pL^p \), \(\Theta(L) = 1 + \theta_1L + \cdots + \theta_qL^q \), and \((1 - L)^d\) is the fractional differencing operator defined by

\[
(1 - L)^d = \sum_{k=0}^{\infty} \frac{\Gamma(k - d)L^k}{\Gamma(-d)\Gamma(k + 1)}
\]

with \(\Gamma(\cdot) \) denoting the gamma (generalized factorial) function. The parameter \(d \) is allowed to assume any real value. The arbitrary restriction of \(d \) to integer values gives rise to the standard autoregressive integrated moving average (ARIMA) model. The stochastic process \(y_t \) is both stationary and invertible if all zeros of \(\Phi(L) \) and \(\Theta(L) \) lie outside the unit circle and \(|d| < 0.5\). The process is nonstationary for \(d \geq 0.5 \), as it possesses infinite variance, for example, see Granger and Joyeux (1980).

Assuming that \(d \in [0, 0.5) \), Hosking (1981) showed that the autocorrelation function, \(\rho(\cdot) \), of an ARFIMA process is proportional to \(k^{2d-1} \) as \(k \to \infty \). Consequently, the autocorrelations of the ARFIMA process decay hyperbolically to zero as \(k \to \infty \) in contrast to the faster, geometric decay of a stationary ARMA process. For \(d \in (0, 0.5) \), \(\sum_{j=-\infty}^{\infty} |\rho(j)| \) diverges as \(n \to \infty \), and the ARFIMA process is said to exhibit long memory, or long-range positive dependence. The process is said to exhibit intermediate memory (anti-persistence), or long-range negative dependence, for \(d \in (-0.5, 0) \).

The importance of long-range dependence in economic and financial time series was first studied by Mandelbrot (1972), who proposed the \(R/S \) (range over standard deviation) statistic, also known as the rescaled-range statistic, originally developed by Hurst (1951) in the context of hydrological studies. The \(R/S \) statistic is the range of the partial sums of deviations of a time series from its mean, rescaled by its standard deviation. For a sample \(x_1, \ldots, x_n \),

\[
Q_n = \frac{1}{s_n} \left[\max_{1 \leq k \leq n} \sum_{j=1}^{k} (x_j - \bar{x}_n) - \min_{1 \leq k \leq n} \sum_{j=1}^{k} (x_j - \bar{x}_n) \right]
\]

where \(s_n \) is the maximum likelihood estimator of the standard deviation of \(x \). The first bracketed term is the maximum of the partial sums of the first \(k \) deviations of \(x_j \) from the full-sample mean, which is nonnegative. The second bracketed term is the corresponding minimum, which is nonpositive. The difference of these two quantities is thus nonnegative, so that \(Q_n > 0 \). Empirical studies have demonstrated that the \(R/S \) statistic has the ability to detect long-range dependence in the data. Like many other estimators of long-range dependence, though, the \(R/S \) statistic has been shown to be excessively sensitive to “short-range dependence,” or short memory, features of the data. Lo (1991) shows that a sizable AR(1) component in the data generating process will seriously bias the \(R/S \) statistic. He modifies the \(R/S \) statistic to account for the effect of short-range dependence by applying a “Newey–West” correction (using a Bartlett window) to derive a consistent estimate of the long-range variance.
of the time series. For maxlag > 0, the denominator of the statistic is computed as the Newey–West estimate of the long run variance of the series; see [R] newey.

Critical values for the test are taken from Table II of Lo (1991).

Saved results

lomodrs saves the following in r():

<table>
<thead>
<tr>
<th>Scalars</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r(lomodrs)</td>
<td>test statistic</td>
</tr>
<tr>
<td>r(N)</td>
<td>degrees of freedom</td>
</tr>
</tbody>
</table>

Remarks

The description of the Hurst–Mandelbrot and Lo statistics draws heavily from Chapter 2 of Campbell et al. (1997).

Examples

Data from Terence Mills’ *Econometric Analysis of Financial Time Series* on U.S. S&P 500 stock returns are analyzed.

```
. use http://fmwww.bc.edu/ec-p/data/Mills2d/sp500a.dta
. tsset time variable:  year, 1871 to 1997
. lomodrs sp500ar
Lo Modified R/S test for sp500ar
Critical values for H0: sp500ar is not long-range dependent
90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]
Test statistic:  .780838 (1 lags via Andrews criterion) N = 124
. lomodrs sp500ar, max(0)
Hurst-Mandelbrot Classical R/S test for sp500ar
Critical values for H0: sp500ar is not long-range dependent
90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]
Test statistic:  .799079 N = 124
. lomodrs sp500ar if tin(1946,)
Lo Modified R/S test for sp500ar
Critical values for H0: sp500ar is not long-range dependent
90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]
Test statistic:  1.08705 (0 lags via Andrews criterion) N = 50
```

Applied to the full sample, the Lo modified R/S test rejects the null hypothesis of no long-range dependence at the 95% level. The Hurst–Mandelbrot test yields a similar inference. When the sample is restricted to the postwar era, the Lo test no longer can reject the null hypothesis at any level of significance.

references

