BOSTON COLLEGE

Department of Economics

EC771: Econometrics
Spring 2004
Prof. Baum, Ms. Uysal

Solution Key for Problem Set 3

1. For the classical normal regression model $\mathbf{y}=\mathbf{x} \beta+\epsilon$ with no constant term and K regressors, what is plim $F[K, n-K]=\operatorname{plim} \frac{R^{2} / K}{\left(1-R^{2}\right) /(n-K)}$, assuming that the true value of β is zero?

The F ratio is computed as $\frac{\mathbf{b}^{\prime} \mathbf{X}^{\prime} \mathbf{X b} / K}{\left[\mathbf{e}^{\prime} \mathbf{e} /(n-K)\right]}$. We substitute $\mathbf{e}=\mathbf{M} \epsilon$, and $\mathbf{b}=\beta+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \epsilon=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \epsilon$. Then,

$$
\begin{aligned}
F & =\left[\epsilon^{\prime} X^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} \epsilon / K\right] /\left[\epsilon^{\prime} \mathbf{M} \epsilon /(n-K)\right] \\
& =\left[\epsilon^{\prime}(\mathbf{I}-\mathbf{M})^{\prime} \epsilon / K\right] /\left[\epsilon^{\prime} \mathbf{M} \epsilon /(n-K)\right]
\end{aligned}
$$

The denominator converges to σ^{2}. The numerator is an idempotent quadratic form in a normal vector. The trace of $(\mathbf{I}-\mathbf{M})$ is K regardless of the sample size, so the numerator is always distributed as σ^{2} times a chi-squared variable with K degrees of freedom. Therefore the numerator of F does not converge to a constant, it converges to σ^{2} / K times a chi-squared variable with K degrees of freedom. Since the denominator of F converges to a constant, σ^{2}, the statistic converges to a random variable, $(1 / K)$ times a chi-squared variable with K degrees of freedom.
2. Let e_{i} be the i th residual in the ordinary least squares regression of \mathbf{y} on \mathbf{X} in the classical regression model, and let ϵ_{i} be the corresponding true disturbance. Prove that $\operatorname{plim}\left(e_{i}-\epsilon_{i}\right)=0$.

We can write e_{i} as $e_{i}=y_{i}-\mathbf{b}^{\prime} \mathbf{x}_{\mathbf{i}}=\left(\beta^{\prime} \mathbf{x}_{\mathbf{i}}+\epsilon_{i}\right)-\mathbf{b}^{\prime} \mathbf{x}_{\mathbf{i}}=\epsilon_{i}+(\mathbf{b}-\beta)^{\prime} \mathbf{x}_{\mathbf{i}}$. We know that $\operatorname{plim} \mathbf{b}=\beta$, and $\mathbf{x}_{\mathbf{i}}$ is unchanged and as n increses, so as $n \rightarrow \infty, e_{i}$ is arbitrarily close to ϵ_{i}.
3. For simple regression model $y_{i}=\mu+\epsilon_{i}, \epsilon_{i} \sim N\left[0, \sigma^{2}\right]$, prove that the sample mean is consistent and asymptotically normally distributed. Now, consider the alternative estimator $\hat{\mu}=\sum_{i} w_{i} y_{i}$, where $w_{i}=\frac{i}{(n(n+1) / 2)}=\frac{i}{\sum_{i} i}$. Note that $\sum_{i} w_{i}=1$. Prove that this is a consistent estimator of μ and obtain its asymptotic variance. [Hint: $\sum_{i} i^{2}=n(n+1)(2 n+1) / 6$.]

The estimator is $\bar{y}=(1 / n) \sum_{i} y_{i}=(1 / n) \sum_{i}\left(\mu+\epsilon_{i}\right)=\mu+(1 / n) \sum_{i} \epsilon_{i}$. Then, $E[\bar{y}]=\mu+(1 / n) \sum_{i} E\left[\epsilon_{i}\right]=\mu$ and $\operatorname{var}[\bar{y}]=\left(1 / n^{2}\right) \sum_{i} \sum_{j} \operatorname{cov}\left[\epsilon_{i}, \epsilon_{j}\right]=\sigma^{2} / n$. Since the mean equals μ and the variance vanishes as $n \rightarrow \infty, \bar{y}$ is consistent. In addition, since \bar{y} is a linear combination of normally distributed variables, \bar{y} has a normal distribution with the mean and variance given above in every sample. Suppose that ϵ_{i} were not normally distributed. Then, $\sqrt{n}(\bar{y}-\mu)=$ $(1 / \sqrt{n})\left(\sum_{i} \epsilon_{i}\right)$ satisfies the requirements for the central limit theorem. Thus,
the asymptotic normal distribution applies whether or not the disturbances have a normal distribution.
For, the alternative estimator, $\hat{\mu}=\sum_{i} w_{i} y_{i}$, so $E[\hat{\mu}]=\sum_{i} w_{i} E\left[y_{i}\right]=\sum_{i} w_{i} \mu=$ $\mu \sum_{i} w_{i}=\mu$ and $\operatorname{var}[\hat{\mu}]=\sum_{i} w_{i}^{2} \sigma^{2}=\sigma^{2} \sum_{i} w_{i}^{2}$. The sum of squares of the weights is $\sum_{i} w_{i}^{2}=\sum_{i} i^{2} /\left[\sum_{i} i\right]^{2}=[n(n+1)(2 n+1) / 6] /[n(n+1) / 2]^{2}=\left[2\left(n^{2}+\right.\right.$ $3 n / 2+1 / 2)] /\left[1.5 n\left(n^{2}+2 n+1\right)\right]$. As $n \rightarrow \infty$, the fraction will be dominated by the term $(1 / n)$ and will tend to zero. This establishes the consistency of this estimator. The last expression also provides the asymptotic variance. The large sample can be found as Asy.var $[\hat{\mu}]=(1 / n) \lim _{n \rightarrow \infty} \operatorname{var}[\sqrt{n}(\hat{\mu}-\mu)]$. For the estimator above, we can use Asy.var $[\hat{\mu}]=(1 / n) \lim _{n \rightarrow \infty} n \operatorname{var}[\hat{\mu}-\mu]=$ $(1 / n) \lim _{n \rightarrow \infty} \sigma^{2}\left[2\left(n^{2}+3 n / 2+1 / 2\right)\right] /\left[1.5 n\left(n^{2}+2 n+1\right)\right]=1.333 \sigma^{2}$. Notice that this is unambiguously larger than the variance of the sample mean, which is the ordinary least squares estimator.
4. For the model in (5-25) and (5-26), prove that when only x^{*} is measured with error, the squared correlation between y and x is less than between y^{*} and x^{*}. (Note the assumption that $y^{*}=y$). Does the same hold true if y^{*} is also measured with error?

Using the notation in the text, $\operatorname{var}\left[x^{*}\right]=Q^{*}$ so, if $y=\beta x^{*}+\epsilon$,

$$
\operatorname{Corr}^{2}\left[y, x^{*}\right]=\left(\beta Q^{*}\right)^{2} /\left[\left(\beta^{2} Q^{*}+\sigma_{\epsilon}^{2}\right) Q^{*}\right]=\beta^{2} Q^{*} /\left[\left(\beta^{2} Q^{*}+\sigma_{\epsilon}^{2}\right)\right]
$$

In terms of the erroneously measured variables,

$$
\begin{aligned}
\operatorname{cov}[y, x] & =\operatorname{cov}\left[\beta x^{*}+\epsilon, x^{*}+\mu\right]=\beta Q^{*} \\
\operatorname{Corr}^{2}[y, x] & =\left(\beta Q^{*}\right)^{2} /\left[\left(\beta^{2} Q^{*}+\sigma_{\epsilon}^{2}\right)\left(Q^{*}+\sigma_{u}^{2}\right)\right] \\
& =\left[Q^{*} /\left(Q^{*}+\sigma_{u}^{2}\right)\right] \operatorname{Corr}^{2}\left[y, x^{*}\right]
\end{aligned}
$$

If y^{*} is also measured with error, the attenuation in the correlation is made even worse. The numerator of the squared correlation is unchanged, but the term $\left(\beta^{2} Q^{*}+\sigma_{\epsilon}^{2}\right)$ in the denominator is replaced with $\left(\beta^{2} Q^{*}+\sigma_{\epsilon}^{2}+\sigma_{v}^{2}\right)$ which reduces the squared correlation yet further.
6. A multiple regression of y on a constant, x_{1} and x_{2} produces the following results: $\hat{y}=4+0.4 x_{1}+0.9 x_{2}, R^{2}=8 / 60, \mathbf{e}^{\prime} \mathbf{e}=520, n=29$,

$$
\left[\begin{array}{ccc}
29 & 0 & 0 \\
0 & 50 & 10 \\
0 & 10 & 80
\end{array}\right]
$$

Test the hypothesis that two slopes sum to 1 .
The estimated covariance matrix for the least squares estimates is

$$
s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{20}{3900}\left[\begin{array}{ccc}
3900 / 29 & 0 & 0 \\
0 & 80 & -10 \\
0 & -10 & 50
\end{array}\right]=\left[\begin{array}{ccc}
.69 & 0 & 0 \\
0 & .40 & -.051 \\
0 & -.051 & .256
\end{array}\right]
$$

where $s^{2}=520 /(29-3)=20$. Then, the test may be based on $t=(.4+.9-$ $1) /[.410+.256-2(.051)]^{1 / 2}=.399$. This is smaller than the critical value of 2.056, so we would not reject the hypothesis.

