BOSTON COLLEGE

Department of Economics

EC771: Econometrics
Spring 2004
Prof. Baum, Ms. Uysal

Solution Key for Problem Set 4

1. The expression for the restricted coefficient vector in (6-14) may be written in the form $\mathbf{b}_{*}=[\mathbf{I}-\mathbf{C R}] \mathbf{b}+\mathbf{w}$, where \mathbf{w} does not involve \mathbf{b}. What is \mathbf{C} ? Show that the covariance matrix of the restricted least squares estimator is $\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}$ and that this matrix may be written as,

$$
\operatorname{var}[\mathbf{b} \mid \mathbf{X}]\left\{[\operatorname{var}(\mathbf{b} \mid \mathbf{X})]^{-1}-\mathbf{R}^{\prime}[\operatorname{var}(\mathbf{R} \mathbf{b} \mid \mathbf{X})]^{-1} R\right\} \operatorname{var}[\mathbf{b} \mid \mathbf{X}] .
$$

By factoring the result in (6-14), we obtain $\mathbf{b}_{*}=[\mathbf{I}-\mathbf{C R}] \mathbf{b}+\mathbf{w}$, where $\mathbf{C}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}}$ and $\mathbf{w}=\mathbf{C q}$. The covariance matrix of the least squares estimator is,

$$
\begin{aligned}
\operatorname{var}\left[\mathbf{b}_{*}\right] & =[\mathbf{I}-\mathbf{C R}] \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}[\mathbf{I}-\mathbf{C R}]^{\prime} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}+\sigma^{2} \mathbf{C R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime} \mathbf{C}^{\prime}-\sigma^{2} \mathbf{C R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}-\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime} \mathbf{C}^{\prime}
\end{aligned}
$$

By multiplying it out, we find $\mathbf{C R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{\mathbf{- 1}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{\mathbf{- 1}}=$ $\mathbf{C R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \mathbf{C}^{\prime}$ so $\operatorname{var}\left[\mathbf{b}_{*}\right]=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\sigma^{2} \mathbf{C R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime} \mathbf{C}^{\prime}=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-$ $\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}$. This may also be written as

$$
\begin{aligned}
\operatorname{var}\left[\mathbf{b}_{*}\right] & =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left\{\mathbf{I}-\mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}\right\} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left\{\left[\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]^{-1}-\mathbf{R}^{\prime}\left[\mathbf{R} \sigma^{\mathbf{2}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}} \mathbf{R}\right\} \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

Since $\operatorname{var}[\mathbf{R b}]=\mathbf{R} \sigma^{\mathbf{2}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}$ this is the answer we seek.
2. Prove the result that the restricted least squares estimator never has a larger variance matrix than the unrestricted least squares estimator.

The variance of the restricted least squares estimator is given in the previous exercise by,

$$
\operatorname{var}\left[\mathbf{b}_{*}\right]=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}-\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}
$$

We know that this matrix is positive definite, since it is derived in the form $\operatorname{var}\left[\mathbf{b}_{*}\right]=\mathbf{B} \sigma^{\mathbf{2}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{B}^{\prime}$, and $\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}$ is positive definite. Therefore, it remains to show only that the matrix subtracted from $\operatorname{var}[\mathbf{b}]$ to obtain $\operatorname{var}\left[\mathbf{b}_{*}\right]$ is positive definite. Consider, then, a quadratic form in $\operatorname{var}\left[\mathbf{b}_{*}\right]$,

$$
\begin{aligned}
\mathbf{z}^{\prime} \operatorname{var}\left[\mathbf{b}_{*}\right] \mathbf{z} & =\mathbf{z}^{\prime} \operatorname{var}[\mathbf{b}] \mathbf{z}-\sigma^{2} \mathbf{z}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}\left(\mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}} \mathbf{R}\right)\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{z} \\
& =\mathbf{z}^{\prime} \operatorname{var}[\mathbf{b}] \mathbf{z}-\mathbf{w}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right] \mathbf{w} \text { where } \mathbf{w}=\sigma \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{z}
\end{aligned}
$$

It remains only to show, therefore, that the inverse matrix in brackets is positive definite. This is obvious since its inverse is positive definite. This shows that
every quadratic form in $\operatorname{var}\left[\mathbf{b}_{*}\right]$ is less than a quadratic form in $\operatorname{var}[\mathbf{b}]$ in the same vector.
3. Prove that under the hypothesis that $\mathbf{R} \beta=q$, the estimator $s=$ $\left(\mathbf{y}-\mathbf{X} \mathbf{b}_{*}\right)^{\prime}\left(\mathbf{y}-\mathbf{X} \mathbf{b}_{*}\right) /(n-K+J)$, where J is the number of restrictions, is unbiased for σ^{2}.

First, use (6-19) to write $\mathbf{e}_{*}^{\prime} \mathbf{e}_{*}=\mathbf{e}^{\prime} \mathbf{e}+(\mathbf{R b}-\mathbf{q})^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}}(\mathbf{R b}-\mathbf{q})$. Now, the result that $E\left[\mathbf{e}^{\prime} \mathbf{e}\right]=(n-K) \sigma^{2}$ obtained in Chapter 6 must hold here, so $E\left[\mathbf{e}_{*}^{\prime} \mathbf{e}_{*}\right]=(n-K) \sigma^{2}+E\left[(\mathbf{R b}-\mathbf{q})^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}}(\mathbf{R b}-\mathbf{q})\right]$. Now, $\mathbf{b}=\beta+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \epsilon$, so $\mathbf{R b}-\mathbf{q}=\mathbf{R} \beta-\mathbf{q}+\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \epsilon$. But $\mathbf{R} \beta-\mathbf{q}=0$, so under the hypothesis $\mathbf{R b}-\mathbf{q}=\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \epsilon$. Insert this in the result above to obtain

$$
E\left[\mathbf{e}_{*}^{\prime} \mathbf{e}_{*}\right]=(n-K) \sigma^{2}+E\left[\epsilon^{\prime} \mathbf{X}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \epsilon\right]
$$

The quantity in square brackets is a scalar, so it is equal to its trace. Permute $\epsilon^{\prime} \mathbf{X}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}$ to obtain
$E\left[\mathbf{e}_{*}^{\prime} \mathbf{e}_{*}\right]=(n-K) \sigma^{2}+E\left[\operatorname{tr}\left\{\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \epsilon \epsilon^{\prime} \mathbf{X}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]\right\}$
We may carry out the expectation inside the trace and use $E\left[\epsilon^{\prime} \epsilon\right]=\sigma^{2} \mathbf{I}$ to obtain

$$
\left.E\left[\mathbf{e}_{*}^{\prime} \mathbf{e}_{*}\right]=(n-K) \sigma^{2}+\operatorname{tr}\left\{\left[\mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]^{-\mathbf{1}} \mathbf{R}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \sigma^{\mathbf{2}} \mathbf{I} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{R}^{\prime}\right]\right\}
$$

Carry out the σ^{2} outside the trace operator, and after cancellation of the products of matrices times their inverses, we obtain

$$
E\left[\mathbf{e}_{*}^{\prime} \mathbf{e}_{*}\right]=(n-K) \sigma^{2}+\sigma^{2} \operatorname{tr}\left[\mathbf{I}_{J}\right]=(n-K+J) \sigma^{2}
$$

4. Show that in the multiple regression of \mathbf{y} on a constant and $\mathbf{x}_{\mathbf{1}}$, and $\mathbf{x}_{\mathbf{2}}$, while imposing the restriction $\beta_{1}+\beta_{2}=1$ leads to the regression of $\mathbf{y}-\mathbf{x}_{\mathbf{1}}$ on a constant and $\mathbf{x}_{\mathbf{2}}-\mathbf{x}_{\mathbf{1}}$.
For convenience, we put the constant term last instead of first in the parameter vector. The constraint is $\mathbf{R b}-\mathbf{q}=0$ where $\mathbf{R}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ so $\mathbf{R}_{1}=[1]$ and $\mathbf{R}_{2}=[1,0]$. Then, $\beta_{1}=[1]^{-1}\left[1-\beta_{2}\right]=1-\beta_{2}$. Thus, $\mathbf{y}=\left(\mathbf{1}-\beta_{\mathbf{2}}\right) \mathbf{x}_{\mathbf{1}}+\beta_{\mathbf{2}} \mathbf{x}_{\mathbf{2}}+\alpha \mathbf{i}+\epsilon$ or $\mathbf{y}-\mathbf{x}_{\mathbf{1}}=\beta_{\mathbf{2}}\left(\mathbf{x}_{\mathbf{2}}-\mathbf{x}_{\mathbf{1}}\right)+\alpha \mathbf{i}+\epsilon$.
