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Solution Key for Problem Set 6

1. What is the covariance matrix, cov[β̂, β̂ − b], of the GLS estimator β̂ =
(X′Ω−1X)−1X′Ω−1y and the difference between it and the OLS estimator, b =
(X′X)−1X′y? The result plays a pivotal role in the development of specification
tests in Hausman(1978).

Write the two estimators as β̂=β + (X′Ω−1X)−1X′Ω−1ε and b=β + (X′X)−1X′ε.
Then, (β̂ − b) = [(X′Ω−1X)−1X′Ω−1 − (X′X)−1X′]ε has E[β̂ − b] = 0 since
both estimators are unbiased. Therefore, Cov[β̂, β̂ − b] = E[(β̂ − β)(β̂ − b)′].
Then,

E{(X′Ω−1X)−1X′Ω−1εε′[(X′Ω−1X)−1X′Ω−1 − (X′X)−1X′]′}

= (X′Ω−1X)−1X′Ω−1(σ2Ω)[Ω−1X(X′Ω−1X)−1 −X(X′X)−1]
= σ2(X′Ω−1X)−1X′Ω−1ΩΩ−1X(X′Ω−1X)−1 − (X′Ω−1X)−1X′Ω−1ΩX(X′X)−1

= (X′Ω−1X)−1(X′Ω−1X)(X′Ω−1X)−1 − (X′Ω−1X)−1(X′X)(X′X)−1 = 0

once the inverse matrices are mutiplied.

2. Suppose that the regression model is y = µ + ε, where ε has a zero mean,
constant variance, and equal correlation ρ across observations. Then cov[εi, εj ] =
σ2ρ if i 6= j. Prove that the least squares estimator of µ is inconsistent. Find
the characteristic roots of Ω and show that Condition 2 after Theorem 10.2 is
violated.

The covariance matrix is

σ2Ω = σ2


1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
ρ ρ 1 · · · ρ

...
ρ ρ ρ · · · 1


The matrix X is a column of 1s, so the least squares estimator of µ is ȳ. In-
serting this Ω into (10-5), we obtain var[ȳ]=σ2

n (1 − ρ + nρ). The limit of this
expression is ρσ2, not zero. Although ordinary least squares is unbiased, it is
not consistent. For this model, (X′ΩX)/n=1 + ρ(n − 1), which does not con-
verge. Using theorem 10.2 instead, X is a column of 1s, so (X′X)=n, a scalar,
which satisfies condition 1. To find the characteristic roots, multiply out the
equation ΩX = λx = (1− ρ)Ix + ρii′x = λx. Since i′x =

∑
i xi, consider any
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vector x whose elements sum to zero. If so, then it’s obvious that λ = ρ. There
are n − 1 such roots. Finally, suppose that x = i. Plugging this into the equa-
tion produces λ = 1 − ρ + nρ. The characteristic roots of Ω are (1 − ρ) with
multiplicity n − 1 and (1 − ρ + nρ), which violates condition 2.

3. Suppose that the regression model is yi = µ + εi, where E[εi|xi]=0, but
var[εi|xi]=σ2x2

i , xi > 0.
(a) Given a sample of observations on yi and x − i, what is the most efficient
estimator of ε? What is its variance?
(b) What is the ordinary least squares estimator of µ and what is the variance
of the ordinary least squares estimator?
(c) Prove that the estimator in (a) is at least as efficient as the estimator in (b).

This is a heteroskedastic regression model in which the matrix X is a column
of ones. The efficient estimator is the GLS estimator, β̂ = (X′Ω−1X)−1X′Ω−1y =
[
∑

i 1yi/x2
i ]/[

∑
i 12/x2

i ] = [
∑

i(yi/x2
i )]/[

∑
i(1/x2

i )]. As always, the variance
of the estimator is var[β̂]=σ2(X′Ω−1X)−1=σ2/[

∑
i(1/x2

i )]. The OLS estima-
tor is (X′X)−1X′y = ȳ. The variance of ȳ is σ2(X′X)−1(X′ΩX)(X′X)−1 =
(σ2/n2)

∑
i x2

i . To show that the variance of the OLS estimator is greater than
or equal to that of the GLS estimator, we must show that (σ2/n2)

∑
i x2

i ≥
σ2/[

∑
i(1/x2

i )] or (1/n2)(
∑

i x2
i )[

∑
i(1/x2

i )] ≥ 1 or
∑

i

∑
j(x

2
i /x2

j ) ≥ n2. The
double sum contains n terms equal to one. There remain n(n − 1)/2 pairs of
the form (x2

i /x2
j + x2

j/x2
i ). If it can be shown that each of these sums is greater

than or equal to 2, the result is proved. Just let zi = x2
i . Then, we require

zi/zj + zj/zi − 2 ≥ 0. But this is equivalent to (z2
i + z2

j − 2zizj)/(zizj) ≥ 0 or
(zi − zj)2/(zizj) ≥ 0, which is certainly true if zi and zj are positive. They are
since zi equals x2

i . This completes the proof.

5. Does first differencing reduce autocorrelation? Consider the models yt =
β′xt+εt, where εt = ρεt−1+ut and εt = ut−λut−1. Compare the autocorrelation
of εt in the original model to that of νt in yt − yt−1 = β′(xt − xt−1) + νt where
νt = εt − εt−1.

For the first order autoregressive model, the autocorrelation is ρ. Consider
the first difference, νt = εt − εt−1 which has var[νt]=2var[εt]-2cov[(εt, εt−1)] =
2σ2

µ[1/(1 − ρ2) − ρ/(1 − ρ2)] =2σ2
µ/(1 + ρ) and cov[νt, νt−1] = 2cov[εt, εt−1]-

var[εt]-cov[εt, εt−1]=σ2
µ[1/(1 − ρ2)][2ρ − 1 − ρ2]=σ2

µ[(ρ − 1)/(1 + ρ)]. Therefore,
the autocorrelation of the differenced process is cov[νt, νt−1]/var[νt]=(ρ− 1)/2.
First differencing reduces the absolute value of the autocorrelation coefficient
when ρ is greater than 1/3. For economic data, this is likely to be fairly common.

For the moving average process, the first order autocorrelation is cov[εt, εt−1]/var[εt]
= −λ/(1 + λ2). To obtain the autocorrelation of the first difference, write
εt−εt−1 = ut−(1+λ)ut−1+λut−2 and εt−1−εt−2 = ut−1−(1+λ)ut−2+λut−3.
The variance of the difference is var[εt − εt−1]=σ2

µ[(1 + λ)2 + (1 + λ2)]. The
covariance can be found by taking the expected product of terms with equal
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subscripts. Thus, cov[εt − εt−1, εt−1 − εt−2]=−σ2
µ(1 + λ)2. The autocorrelation

is cov[εt−εt−1, εt−1−εt−2]/var[εt−εt−1]=−(1+λ)2/[(1+λ)2+(1+λ2)]. For most
of the range of the autocorrelation of the original series, differences increases
autocorrelation. But, for most of the range of values that are economically
meaningful, differencing reduces autocorrelation.
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