BOSTON COLLEGE

Department of Economics

EC771: Econometrics
Spring 2004
Prof. Baum, Ms. Uysal

Solution Key for Problem Set 6

1. What is the covariance matrix, $\operatorname{cov}[\hat{\beta}, \hat{\beta}-\mathbf{b}]$, of the GLS estimator $\hat{\beta}=$ $\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{\mathbf{- 1}} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{y}$ and the difference between it and the OLS estimator, $\mathbf{b}=$ $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}$? The result plays a pivotal role in the development of specification tests in Hausman(1978).

Write the two estimators as $\hat{\beta}=\beta+\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{\mathbf{- 1}} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{\mathbf{1}} \epsilon$ and $\mathbf{b}=\beta+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \epsilon$. Then, $(\hat{\beta}-\mathbf{b})=\left[\left(\mathbf{X}^{\prime} \mathbf{\Omega}^{\mathbf{1}} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{\Omega}^{-\mathbf{1}}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right] \epsilon$ has $E[\hat{\beta}-\mathbf{b}]=\mathbf{0}$ since both estimators are unbiased. Therefore, $\operatorname{Cov}[\hat{\beta}, \hat{\beta}-\mathbf{b}]=E\left[(\hat{\beta}-\beta)(\hat{\beta}-\mathbf{b})^{\prime}\right]$. Then,

$$
\begin{aligned}
& E\left\{\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \epsilon \epsilon^{\prime}\left[\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}\right]^{\prime}\right\} \\
= & \left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}}\left(\sigma^{\mathbf{2}} \boldsymbol{\Omega}\right)\left[\boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{-\mathbf{1}}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}\right] \\
= & \sigma^{\mathbf{2}}\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\Omega} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{-\mathbf{1}}-\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \boldsymbol{\Omega} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \\
= & \left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{-\mathbf{1}}\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{-\mathbf{1}}-\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{-\mathbf{1}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}=\mathbf{0}
\end{aligned}
$$

once the inverse matrices are mutiplied.
2. Suppose that the regression model is $y=\mu+\epsilon$, where ϵ has a zero mean, constant variance, and equal correlation ρ across observations. Then $\operatorname{cov}\left[\epsilon_{i}, \epsilon_{j}\right]=$ $\sigma^{2} \rho$ if $i \neq j$. Prove that the least squares estimator of μ is inconsistent. Find the characteristic roots of $\boldsymbol{\Omega}$ and show that Condition 2 after Theorem 10.2 is violated.

The covariance matrix is

$$
\sigma^{2} \boldsymbol{\Omega}=\sigma^{2}\left[\begin{array}{ccccc}
1 & \rho & \rho & \cdots & \rho \\
\rho & 1 & \rho & \cdots & \rho \\
\rho & \rho & 1 & \cdots & \rho \\
& & & \vdots & \\
\rho & \rho & \rho & \cdots & 1
\end{array}\right]
$$

The matrix \mathbf{X} is a column of 1 s , so the least squares estimator of μ is \bar{y}. Inserting this $\boldsymbol{\Omega}$ into (10-5), we obtain $\operatorname{var}[\bar{y}]=\frac{\sigma^{2}}{n}(1-\rho+n \rho)$. The limit of this expression is $\rho \sigma^{2}$, not zero. Although ordinary least squares is unbiased, it is not consistent. For this model, $\left(\mathbf{X}^{\prime} \boldsymbol{\Omega} \mathbf{X}\right) / \mathrm{n}=1+\rho(n-1)$, which does not converge. Using theorem 10.2 instead, \mathbf{X} is a column of 1 s , so $\left(\mathbf{X}^{\prime} \mathbf{X}\right)=\mathrm{n}$, a scalar, which satisfies condition 1 . To find the characteristic roots, multiply out the equation $\boldsymbol{\Omega} \mathbf{X}=\lambda \mathbf{x}=(\mathbf{1}-\rho) \mathbf{I} \mathbf{x}+\rho \mathbf{i}^{\prime} \mathbf{x}=\lambda \mathbf{x}$. Since $\mathbf{i}^{\prime} \mathbf{x}=\sum_{i} x_{i}$, consider any
vector \mathbf{x} whose elements sum to zero. If so, then it's obvious that $\lambda=\rho$. There are $n-1$ such roots. Finally, suppose that $\mathbf{x}=\mathbf{i}$. Plugging this into the equation produces $\lambda=1-\rho+n \rho$. The characteristic roots of $\boldsymbol{\Omega}$ are $(1-\rho)$ with multiplicity $n-1$ and $(1-\rho+n \rho)$, which violates condition 2 .
3. Suppose that the regression model is $y_{i}=\mu+\epsilon_{i}$, where $\mathrm{E}\left[\epsilon_{i} \mid x_{i}\right]=0$, but $\operatorname{var}\left[\epsilon_{i} \mid x_{i}\right]=\sigma^{2} x_{i}^{2}, x_{i}>0$.
(a) Given a sample of observations on y_{i} and $x-i$, what is the most efficient estimator of ϵ ? What is its variance?
(b) What is the ordinary least squares estimator of μ and what is the variance of the ordinary least squares estimator?
(c) Prove that the estimator in (a) is at least as efficient as the estimator in (b).

This is a heteroskedastic regression model in which the matrix \mathbf{X} is a column of ones. The efficient estimator is the GLS estimator, $\hat{\beta}=\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{X}\right)^{\mathbf{- 1}} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-\mathbf{1}} \mathbf{y}=$ $\left[\sum_{i} 1 y_{i} / x_{i}^{2}\right] /\left[\sum_{i} 1^{2} / x_{i}^{2}\right]=\left[\sum_{i}\left(y_{i} / x_{i}^{2}\right)\right] /\left[\sum_{i}\left(1 / x_{i}^{2}\right)\right]$. As always, the variance of the estimator is $\operatorname{var}[\hat{\beta}]=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{\Omega}^{\mathbf{- 1}} \mathbf{X}\right)^{\mathbf{- 1}}=\sigma^{2} /\left[\sum_{i}\left(1 / x_{i}^{2}\right)\right]$. The OLS estimator is $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}=\overline{\mathbf{y}}$. The variance of \bar{y} is $\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{\mathbf{1}}\left(\mathbf{X}^{\prime} \mathbf{\Omega} \mathbf{X}\right)\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}=$ $\left(\sigma^{2} / n^{2}\right) \sum_{i} x_{i}^{2}$. To show that the variance of the OLS estimator is greater than or equal to that of the GLS estimator, we must show that $\left(\sigma^{2} / n^{2}\right) \sum_{i} x_{i}^{2} \geq$ $\sigma^{2} /\left[\sum_{i}\left(1 / x_{i}^{2}\right)\right]$ or $\left(1 / n^{2}\right)\left(\sum_{i} x_{i}^{2}\right)\left[\sum_{i}\left(1 / x_{i}^{2}\right)\right] \geq 1$ or $\sum_{i} \sum_{j}\left(x_{i}^{2} / x_{j}^{2}\right) \geq n^{2}$. The double sum contains n terms equal to one. There remain $n(n-1) / 2$ pairs of the form $\left(x_{i}^{2} / x_{j}^{2}+x_{j}^{2} / x_{i}^{2}\right)$. If it can be shown that each of these sums is greater than or equal to 2 , the result is proved. Just let $z_{i}=x_{i}^{2}$. Then, we require $z_{i} / z_{j}+z_{j} / z_{i}-2 \geq 0$. But this is equivalent to $\left(z_{i}^{2}+z_{j}^{2}-2 z_{i} z_{j}\right) /\left(z_{i} z_{j}\right) \geq 0$ or $\left(z_{i}-z_{j}\right)^{2} /\left(z_{i} z_{j}\right) \geq 0$, which is certainly true if z_{i} and z_{j} are positive. They are since z_{i} equals x_{i}^{2}. This completes the proof.
5. Does first differencing reduce autocorrelation? Consider the models $y_{t}=$ $\beta^{\prime} \mathbf{x}_{\mathbf{t}}+\epsilon_{t}$, where $\epsilon_{t}=\rho \epsilon_{t-1}+u_{t}$ and $\epsilon_{t}=u_{t}-\lambda u_{t-1}$. Compare the autocorrelation of ϵ_{t} in the original model to that of ν_{t} in $y_{t}-y_{t-1}=\beta^{\prime}\left(\mathbf{x}_{\mathbf{t}}-\mathbf{x}_{\mathbf{t}-\mathbf{1}}\right)+\nu_{t}$ where $\nu_{t}=\epsilon_{t}-\epsilon_{t-1}$.

For the first order autoregressive model, the autocorrelation is ρ. Consider the first difference, $\nu_{t}=\epsilon_{t}-\epsilon_{t-1}$ which has $\operatorname{var}\left[\nu_{t}\right]=2 \operatorname{var}\left[\epsilon_{t}\right]-2 \operatorname{cov}\left[\left(\epsilon_{t}, \epsilon_{t-1}\right)\right]=$ $2 \sigma_{\mu}^{2}\left[1 /\left(1-\rho^{2}\right)-\rho /\left(1-\rho^{2}\right)\right]=2 \sigma_{\mu}^{2} /(1+\rho)$ and $\operatorname{cov}\left[\nu_{t}, \nu_{t-1}\right]=2 \operatorname{cov}\left[\epsilon_{t}, \epsilon_{t-1}\right]-$ $\operatorname{var}\left[\epsilon_{t}\right]-\operatorname{cov}\left[\epsilon_{t}, \epsilon_{t-1}\right]=\sigma_{\mu}^{2}\left[1 /\left(1-\rho^{2}\right)\right]\left[2 \rho-1-\rho^{2}\right]=\sigma_{\mu}^{2}[(\rho-1) /(1+\rho)]$. Therefore, the autocorrelation of the differenced process is $\operatorname{cov}\left[\nu_{t}, \nu_{t-1}\right] / \operatorname{var}\left[\nu_{t}\right]=(\rho-1) / 2$. First differencing reduces the absolute value of the autocorrelation coefficient when ρ is greater than $1 / 3$. For economic data, this is likely to be fairly common.

For the moving average process, the first order autocorrelation is $\operatorname{cov}\left[\epsilon_{t}, \epsilon_{t-1}\right] / \operatorname{var}\left[\epsilon_{t}\right]$ $=-\lambda /\left(1+\lambda^{2}\right)$. To obtain the autocorrelation of the first difference, write $\epsilon_{t}-\epsilon_{t-1}=u_{t}-(1+\lambda) u_{t-1}+\lambda u_{t-2}$ and $\epsilon_{t-1}-\epsilon_{t-2}=u_{t-1}-(1+\lambda) u_{t-2}+\lambda u_{t-3}$. The variance of the difference is $\operatorname{var}\left[\epsilon_{t}-\epsilon_{t-1}\right]=\sigma_{\mu}^{2}\left[(1+\lambda)^{2}+\left(1+\lambda^{2}\right)\right]$. The covariance can be found by taking the expected product of terms with equal
subscripts. Thus, $\operatorname{cov}\left[\epsilon_{t}-\epsilon_{t-1}, \epsilon_{t-1}-\epsilon_{t-2}\right]=-\sigma_{\mu}^{2}(1+\lambda)^{2}$. The autocorrelation is $\operatorname{cov}\left[\epsilon_{t}-\epsilon_{t-1}, \epsilon_{t-1}-\epsilon_{t-2}\right] / \operatorname{var}\left[\epsilon_{t}-\epsilon_{t-1}\right]=-(1+\lambda)^{2} /\left[(1+\lambda)^{2}+\left(1+\lambda^{2}\right)\right]$. For most of the range of the autocorrelation of the original series, differences increases autocorrelation. But, for most of the range of values that are economically meaningful, differencing reduces autocorrelation.

