
EC771: Econometrics, Spring 2007

Greene, Econometric Analysis (5th ed, 2003)

Chapters 6, 7, 8:

Inference, Prediction, Functional Form, Struc-

tural Change, Specification Error

Inference in the regression model

We may readily test hypotheses which involve

“nested models”: that is, the comparison of

a general model with a special case of that

model, in which one or more hypotheses on

the coefficient vector are assumed to hold with

certainty. If we work with purely linear restric-

tions on β, we may write the problem as:

y = Xβ + ε,

subject to Rβ = q. The matrix R, with J rows,

must be of full row rank, implying that J ≤ K.



Realistically, we should also rule out the case

of equality, since in that case β = R−1q, and

no estimation is necessary.

We can follow two approaches with this con-

strained system: first, we may estimate the

unconstrained model, and test the degree to

which the constraints would be satisfied by the

data. Second, we may estimate the model sub-

ject to constraints, which must involve a loss

of fit, and evaluate how serious that loss might

be in relation to the unconstrained alternative.

For the first approach, consider testing the null

hypothesis Rβ = q versus the alternative of

inequality. Several special cases:

• ANOVA “F”: R = [0 : I] contains a (K-1)

order identity matrix with a zero vector for

the constant term, with q as a (K-1) row



null vector. The null hypothesis is that all

slopes are jointly zero.

• A single coefficient is zero (or a particular

value): R is a zero vector with a single 1

corresponding to that coefficient’s position

in the β vector, q = 0 (or the particular

value).

• Two of the coefficients are equal: R is a

zero vector with 1 and -1 in positions cor-

responding to those coefficients’ positions

in the β vector, q = 0.

• The ratio of two coefficients is a: R is a

zero vector with 1 and a in appropriate lo-

cations, and q = 0.



• Several coefficients sum to 1: R is a zero

vector with 1s in positions corresponding

to those coefficients, and q = 1.

• A set of coefficients are jointly zero: R =

[I : 0] where the first J coefficients are

assumed to equal zero, and q = 0.

More complicated sets of linear restrictions on

β may be expressed in terms of R. In any case,

the restrictions must be linearly independent,

so that R is of full row rank.

Given the least squares estimator of the un-

constrained model, b, we are interested in the

discrepancy vector m = Rb − q. Although it

is unlikely that m = 0, how far from the null

vector might m be (in terms of its norm) be-

fore we will conclude that the null hypothesis



should be rejected? Under that null hypothe-

sis, m has a mean vector 0 and a covariance

matrix

Var[Rb−q|X] = R Var[b|X]R′ = σ2R(X ′X)−1R′.

We can thus base a test of H0 on the Wald

statistic

W = m′(Var[m|X])−1m

W = σ−2(Rb− q)′[R(X ′X)−1R′]−1(Rb− q)

which under the null hypothesis will have a

χ2(J) distribution. To make this test statistic

operational, we must replace the unknown σ2

with a consistent estimate thereof, s2. Most

commonly, we express this test statistic as an

F–statistic,

Ŵ = J−1(Rb− q)′[R(s2X ′X)−1R′]−1(Rb− q)

which under the null hypothesis will have J

and (n − K) degrees of freedom. If J = 1,



then this F–statistic is just the square of a t–

statistic with (N −K) degrees of freedom. In-

deed, any of the hypotheses listed above that

involve a single row in R (J = 1) are commonly

expressed as t–tests, no matter how many co-

efficients may be involved. In contrast, tests

involving J > 1 are joint tests, and can only

be expressed as an F–statistic (or χ2 statis-

tic). Note that any of these subset hypothesis

tests may be performed in Stata via the test

command; that command’s accum option may

be used to build up a set of restrictions into a

single joint F–statistic.

The restricted least squares estimator

Alternatively, we might estimate b subject to

the restrictions Rb = q. This may be done as

the Lagrangean expression

L(b0, λ) = (y −Xb0)
′(y −Xb0) + 2λ′(Rb0 − q).



The necessary conditions are

∂L

∂b0
= −2X ′(y −Xb0) + 2R′λ = 0

and
∂L

∂λ
= 2(Rb0 − q) = 0.

Assuming that X is of full column rank, this

system may be solved for the solution in terms

of the unconstrained estimator b:

b0 = b− (X ′X)−1R′[R(X ′X)−1R′]−1(Rb− q)

in which the restricted least squares (RLS) es-

timator may be seen as a corrected version of

the OLS estimator in which the correction fac-

tor relates to the magnitude of the discrepancy

vector m. The explicit solution for λ likewise

depends on the discrepancy vector, indicating

the shadow cost of each constraint on the un-

constrained solution. The covariance matrix

for b0 may be written as the covariance ma-

trix of the unrestricted OLS estimator minus



a nonnegative definite matrix. To compare

the unconstrained and constrained (RLS) so-

lutions, we may form an F–statistic from the

expression in the difference of sums of squared

residuals:

e′0e0 − e′e = (Rb− q)′[R(X ′X)−1R′](Rb− q)

where e0 are the RLS residuals. This gives rise

to the F–statistic

F [J, n−K] =
(e′0e0 − e′e)/J

e′e/(n−K)

which can be transformed into

F [J, n−K] =
(R2 −R2

0)/J

(1−R2)/(n−K)

In this context, the effect of the restrictions

may be viewed as either the loss in the least

squares criterion (with the numerator of the

first statistic viewed as the average cost per

restriction) or the reduction in R2 from the

restrictions. The numerator of either expres-

sion is non–negative, since imposition of the



restrictions cannot increase R2 nor decrease

the sum of squared residuals. This estimator

is provided by Stata as the command cnsreg

(constrained regression).

These test statistics are valid for normally dis-

tributed disturbances; without normality, we

still have an asymptotic justification for the

statistics, and J × F (J, n−K) ∼ χ2(J) in large

samples. Since b is asymptotically normal, ir-

respective of the distribution of the errors, this

form of the test statistic will be appropriate for

large samples.

Testing nonlinear restrictions

The apparatus we have developed here applies

for sets of linear restrictions on β. What if we

have nonlinear restrictions on the parameters:

e.g., a constraint involving a product of param-

eters? Then we might write H0 : c(β) = q, and



we would require an estimate of the variance of

the expression c(b)− q, a nonlinear function of

the LS coefficient vector b. This test statistic

may be calculated via the delta method, as we

have discussed earlier. In the context of Stata,

the command testnl performs nonlinear tests

on the coefficient vector.

Choosing between non–nested models

The apparatus described above works quite

well for classical hypothesis testing, where one

model can be viewed as a proper subset of

another. Annoyingly, economic theories often

are cast in the form of competing hypotheses,

where neither may be expressed as a proper

subset of the other. Furthermore, no theory

may propound the “supermodel” which would

encompass all elements of both theories: es-

sentially the artificial nesting of both models.

Tests in this context are testing one specific



model versus a hybrid model that contains ele-

ments of both, which is not proposed by either

theory. Thus, what if we have a setup like

H0 : y = Xβ + ε0

H1 : y = Zγ + ε1

where some of the elements of both X and

Z are unique? The Bayesian econometrician

would have no difficulty with this, since she

would merely ask “which of these hypotheses is

more likely to have generated the data”? But

examining goodness of fit, and noting that one

of these models has a higher R2 or R̄2, is not

likely to be satisfying.

A solution to this problem was proposed by

Davidson and MacKinnon as their J test: not

to be confused with Hansen’s J test in GMM.

It relates to a very simple approach: if model

0 has explanatory power over and above that

of model 1, then model 0 is superior, and vice



versa. The J test therefore is performed by

generating the predicted values of each series,

and including them in an augmented regression

of the other model. So, for instance, include

the ŷ from the alternative hypothesis above in

the null hypothesis’ model. If that ŷ is sig-

nificant, then we reject the model of the null

hypothesis. We now reverse the definitions of

the two models, and include the ŷ from the

null hypothesis in the alternative hypothesis’

model. Unfortunately, all four possibilities can

arise: H0 may stand against H1, H1 may stand

against H0, both hypotheses may be rejected,

or neither hypothesis may be rejected. Only

in the first two cases does the J test deliver a

definitive verdict. The Stata user–contributed

command nnest performs the J test.

A separate test along these lines is that of Cox

(1961, 1962) extended by Pesaran (1974) and

Pesaran and Deaton (1978). These tests are



based on likelihood ratio tests that may be

constructed from the fitted values and sums

of squared residuals of the nonnested mod-

els. The Cox–Pesaran–Deaton test is also per-

formed by the nnest package.

Prediction

We often use regression methods to generate

predictions from the estimated model. These

predictions may be in–sample: that is, for the

values of X used in the estimation, or out–of–

sample, for arbitrary values of X: X0. If we

wish to predict E[y0|X0], the Gauss–Markov

theorem indicates that the evaluation of the

regression surface is the BLUP (best linear un-

biased predictor):

E[y0|X0] = ŷ0 = X0b.

In this context, we are predicting the value of

y that would be expected for every observa-

tion with its regressors equal to X0. We must



distinguish this from predicting the value of

y that would apply for a specific X0: for in-

stance, the value of an individual house with a

particular set of characteristics. When we do

the former, we may use our assumptions on

the distribution of the error term to take the

expected value of ε over the subpopulation as

zero. When we want to make a specific predic-

tion, we must acknowledge that this predicted

value contains an ε0.

The prediction error for the latter case is

y0 − ŷ0 = (β − b)X0 + ε0,

an expression that includes both the sampling

error of b and the specific ε associated with

that value of y. To generate a standard er-

ror for E[y0|X0], we may form the expecta-

tion of this error, which only involves the first

term, giving rise to the standard error of pre-

diction. For the prediction of a specific value



of y (rather than the expected value from the

subpopulation), we consider the variance of the

prediction error, which gives rise to the stan-

dard error of forecast (including the variance

of ε0).

The variance of ε0 in the former case may be

written, for a simple y on X regression, as

σ2
[
n−1 +

(X0 − X̄)2)∑
x2

]
where x is the deviation from mean of X. The

square root of this quantity (with σ2 replaced

with our consistent estimate s2) is then utilized

in the prediction interval estimate:

ŷ0 ± tλ/2 se(ε0)

The interval prediction is then defined as a pair

of parabolas, with the narrowest interval at X̄,

widening as we diverge from the multivariate

point of means.



In contrast, if we wish to predict the specific

value for y0 corresponding to a value X0, we

have the forecast variance

σ2
[
1 + n−1 +

(X0 − X̄)2)∑
x2

]
Since the latter expression contains a σ2 term

which does not go to zero as n → ∞, the

forecast interval is wider than the prediction

interval, and the σ2 represents an irreducible

minimum for the accuracy of the forecast.

For a multiple regression problem, the predic-

tion variance is

Var[(β − b)X0|X] = X ′
0[σ

2(X ′X)−1]X0,

whereas the forecast variance for a specific

value of y0 is

Var[(β − b)X0|X] = σ2 + X ′
0[σ

2(X ′X)−1]X0.

These two constructs, the standard error of

prediction and standard error of forecast, may



be computed following a regression in Stata

via predict newvar, stdp and predict newvar,

stdf respectively.

Binary variables

One of the most useful tools in applied econo-

metrics is the binary or dummy variable. We

use dummies for many purposes, and there are

numerous commands in any econometrics lan-

guage that work with dummy variables. We

often want to use a set of dummy variables

to reflect the values of a qualitative variable:

one which takes on several distinct values. We

may also use dummies to reflect the values of

an ordinal variable: one which takes on discrete

values, but has no numerical significance. E.g.,

a Likert scale with values ”Strongly disagree”,

”Disagree”, ”Neutral”, ”Agree”, ”Strongly Agree”

might be coded as 1,2,3,4,5, but we would



never want to enter those values into a re-

gression equation—that would treat them as

cardinal measurements, which they are not.

We often use dummies to indicate member-

ship in a set. If we are defining a dummy for

male survey respondents, we can use generate

male = (sex == "M") if we know that there are

no missing values in the sex variable. Oth-

erwise, we should use generate male = (sex ==

"M") if sex !="" to ensure that missing val-

ues become missing in the dummy. If sex was

coded as (1,2), we would use generate male =

(sex == 2) if sex <. to accomplish the same

task.

For a numerically coded qualitative variable

(sex=(1,2), or region=(11,21,31,41)) we could

use the tab varname, gen(stub) command. For

instance, tab sex, gen(gender) would create gen-

der1 and gender2. This will automatically take



care of missing values, and becomes particu-

larly handy if we have a large number of cate-

gories (e.g. the 50 states). What if the vari-

able is a string variable, e.g., state=AK, AL,

AZ, etc.? Then we may use the encode com-

mand. For instance, encode state, gen(stid)

would generate a new variable stid which ap-

pears identical to state. In reality, it now takes

on numeric values of 1–50, with value labels

linking each numeric code and the original string.

The stid variable may now be used in any com-

mand that requires numeric values (e.g., tsset).

Note that the mean of a dummy variable is the

sample proportion of 1s for that category.

We define a complete set of dummy variables

as mutually exclusive and exhaustive. If D is a

n× d matrix of dummies, D ιd = ιn. Note that

the mean of a dummy variable is the sample

proportion of 1s for that category, and those

proportions must sum to unity for a complete



set. Since a complete set of dummies sums to

an ι vector, it cannot normally be included in

a regression equation; we must drop one (any

one) of the dummies and include the rest. The

coefficients on the included dummies are then

with reference to the excluded class.

For instance, consider region, with four values.

A regression of income on any three of the re-

gion dummies will yield estimates of the dif-

ferences in mean income levels between those

regions and the excluded region (whose income

level is given, in point and interval form, by the

constant term). The ANOVA “F” statistic for

this regression is aptly named, for this model is

a one–way analysis of variance: does the qual-

itative factor region affect income? That null

hypothesis is tested by the ANOVA “F”, and

all “slopes” being equal to zero is equivalent

to all regions having statistically indistinguish-

able income levels. (This is analogous to the



t–test performed by the ttest command, but

that test can only be used on two groups (e.g.,

M and F)). What if we wanted point and in-

terval estimates of the regional income levels?

Since we are performing one–way ANOVA, we

can include all dummies and suppress the con-

stant term. This form of the equation will

not be useful for testing differences in mean

income levels, though.

It is useful to note that any form of ANOVA

may be expressed as a regression equation with

nothing but dummy variables on the RHS. For

instance, a “two–way ANOVA” takes account

of two qualitative factors: e.g., gender and re-

gion. We may include all but one of the dum-

mies for each factor in the equation; the con-

stant term is now the mean income level of

the excluded class (e.g., males in region 11).

In this form, we consider that the two–way ta-

ble defined by this equation may be filled out



from the marginal entries, which is equivalent

to assuming that the effects of gender and re-

gion on income are independent factors. We

can imagine cases where this is not so: for in-

stance, unemployment rates may be high for

teenagers, high for minorities, but the unem-

ployment rate among minority teens may be

even higher than would be predicted by the

sum of the two marginal effects. This gives

rise to a two–way ANOVA with interactions,

in which we consider an additional set of co-

efficients that interact the factors. (Note that

this can be done in a Boolean manner, treating

the individual factors’ dummies with an AND

condition, or algebraically, since the product

of two dummies is the AND of those factors).

Such a model allows the two factors to have

nonlinear effects on the dependent variable.

The nonlinearity is readily testable as the con-

dition that all interaction terms have zero co-

efficients. Note that in the case of two–way



ANOVA, even if we exclude the constant term

from the equation, we cannot include more

than one complete set of dummies.

We may consider higher–level ANOVA mod-

els, but even in a large dataset we often run

out of degrees of freedom in populating all

of the cells of a three– or four–way design.

Since each cell of such a design is a conditional

mean, we must have a large enough n in each

cell to estimate such a mean reliably. Note

also that a dummy variable that is unity for

a single observation has the effect of remov-

ing that observation from the analysis. This

should be kept in mind in a time–series data

context when defining dummies which allow

for special events (strikes, wars, etc.): if those

events last a single period, a dummy has the

effect of dropping them from the sample.

In much applied econometric research, we are

concerned with what a statistician would call



“ANOCOVA”: analysis of covariance, in which

the regression equation contains both qualita-

tive and quantitative factors (a combination

of measurable Xs and dummies). In such a

model, dummies alone serve to shift the con-

stant term for those observations which belong

to a particular category. In such a model, dum-

mies may also be interacted with measurable

variables, which allows for different slopes as

well as intercepts for different categories. We

can readily define a set of functions that would

apply for, e.g., data containing males/females

and blacks/whites. Up to four distinct func-

tions may be defined for these data, and we

may consider all of the proper subsets of those

functions in which slopes, intercepts, or both

are constrained across the categories. Note

that estimating the four functions (and allow-

ing both slope and intercept to vary) is es-

sentially the same as estimating separate re-

gression equations for each category, with the



single constraint that all of those equations are

forced to have the same σ2.

A set of seasonal dummies may be used, in

the context of time–series data, to deseason-

alize the data. If quarterly (monthly) retail

sales are regressed on three (eleven) seasonal

dummies, the residuals from this model are de-

seasonalized retail sales. (It is customary to

add the mean of the original series to restore

the scale of the data). This would be additive

seasonal adjustment, in which we assume that

the effect of being in Q1 is a certain dollar

amount of retail sales. If we wished to apply

multiplicative seasonal adjustment, we would

regress log y on the three (eleven) dummies,

which would assume that the effect of being

in Q1 is a certain percentage deviation in retail

sales from the excluded season. This seasonal

adjustment may be done as a separate step,

or may be applied in the context of a regres-

sion model: if we wish to regress retail sales



(NSA) on other data which are SA or SAAR,

we may just include the seasonal dummies in

the regression equation (as we would a time

trend; the notion of partialling off the effect

of trend or seasonality is the same if we as-

sume that the regressors are free from those

effects. If the regressors might contain a trend

or seasonal factors, they should be detrended

(or deseasonalized) as well). In any case, we

would test for the existence of seasonal factors

by an F–test on the set of seasonal dummies.

Dummy variables are often used to test for

structural change in a regression function in

which we specify a priori the timing of the

possible structural breakpoints. We may allow

for different slopes and/or intercepts for differ-

ent periods in a time–series regression (e.g.,

allowing for a consumption function to shift

downward during wartime). If we fully interact

the regime dummies, we are in essence esti-

mating separate regressions for each regime,



apart from the constraint of a common σ2.

The test that all coefficients associated with

regime 2 (3,...) are equal to zero is often

termed a Chow test. One can perform such

a test by estimating the two (three,...) re-

gressions separately, and comparing the sum

of their SSRs to that of the restricted (single–

regime) regression. However, this is generally

easier to implement using regime dummies in-

teracted with all regressors. This strategy is

also desirable since it allows for a variety of

special cases where we assume that some coef-

ficients are stable across regimes while others

vary: those interacted with regime dummies

will be allowed to vary.

In some cases a regime may be too short to

perform this test–i.e. estimate the regime as

a separate regression. This applies particularly

at the end of a time series, where we may want

to ask whether the most recent n2 observa-

tions are generated by the same model as the



prior n1 observations. In this case, one can

construct an F–test by running the regression

over all n observations, then running it over

the first n1 observations, and comparing their

SSRs. The SSR for the full sample will exceed

that from the first n1 observations unless the

regression fits perfectly over the additional n2

data points. Therefore, this test has n2 d.f. in

the numerator:

F [n2, n1 −K] =
(e′nen − e′1e1)/n2

(e′1e1)/(n1 −K)

where en is the residual vector from the full

sample. This is often termed the Chow pre-

dictive test.

We may also be concerned about the realis-

tic possibility that the σ2 has changed over

regimes. We could deal with this by computing

robust standard errors for the regression with

regime dummies, but we might want to esti-

mate the differing variances for each regime.



This could be handled by explicitly providing

for “groupwise heteroskedasticity”, as we will

discuss at a later date.

In other cases, we may want to allow a profile

(such as an age–earnings profile) to reflect dif-

ferent slopes over time, but force the resulting

function to be piecewise continuous. This can

be achieved by a linear spline: for three seg-

ments, for instance, we wish to constrain the

estimated segments to join at the two points,

known as knots, of the spline function. Say

that we wish to estimate three separate seg-

ments of the earnings function, for those less

than 25, between 25 and 40, and over 40.

Rather than estimating six coefficients (three

slopes, three intercepts), we must place two

constraints on the system: that the function

evaluated at the knots is piecewise continuous.

Doing the algebra for this problem will show

that three regressors (and a constant term)



are needed: age, (age-25) and (age-40). The

latter two are set to zero if they are negative.

Regression of earnings on these three regres-

sors and a constant term will result in a piece-

wise continuous age–earnings profile. This can

be automated by Stata’s mkspline command.

See the example in Baum (2006).

Splines of higher orders are often useful in ap-

plied work; e.g. a quadratic spline will be con-

tinuous and differentiable once, and a cubic

spline will be continuous and twice differen-

tiable. Both have been widely used in financial

analysis: e.g., term structure research.

Tests of model stability

The dummy variable methods described above

are useful when the timing (or location, in

cross–sectional terms) of a structural break is

known a priori. However, we often are unsure



as to whether a change has taken place, or in

a time–series context, when a relationship may

have undergone a structural shift. This is par-

ticularly problematic when a change may be

a gradual process rather than an abrupt and

discernable break. A number of tests have

been devised to evaluate the likelihood that

a change has taken place, and if so, when that

break may have occurred. The “cusums” tests

of Brown, Durbin and Evans (1975) are based

on recursive residuals (or their squares), and

the notion that a change will show up in the

one–step ahead prediction errors if we con-

sider all possible breakpoints in a series. A

formal test may be devised by evaluating the

cumulative sum of residuals, and noting that

the cumulative sum will stray outside a con-

fidence interval in the vicinity of a structural

break. Tests of this nature are available in

Stata via the user–contributed routine cusum6.

The power of cusums tests may be quite low



in practice, but they will be somewhat useful in
detecting a structural break in the relationship.

Specification error

We have worked with regression models un-
der the maintained hypothesis that the model
is correctly specified. What if this assump-
tion does not hold? Although there is no nec-
essary relation between the specification em-
ployed and the true data generating process,
let us consider two alternatives: given the de-
pendent variable y, we may omit relevant vari-
ables, or include irrelevant variables. First con-
sider omission of relevant variables from the
correctly specified model

y = X1β1 + X2β2 + ε

with K1 and K2 regressors in the two subsets.
Imagine that we ignore X2, so that

b1 = (X ′
1X1)

−1X ′
1y

= β1 + (X ′
1X1)

−1X ′
1X2β2 + (X ′

1X1)
−1X ′

1ε



Unless X ′
1X2 = 0 or β2 = 0, the estimate of b1

is biased, so that

E[b1|X] = β1 + P1·2β2

where P1·2 = (X ′
1X1)

−1X ′
1X2 is the K1 × K2

matrix reflecting the regression of each column

of X2 on the columns of X1. If K1 = K2 = 1

and the X2 variable is correlated with X1, we

may derive the direction of bias, but in general

we will not be able to make any statements

about the coefficients in b1 with multiple vari-

ables in each set. It appears, then, that the

cost of omitting relevant variables is high: the

resulting coefficients are biased and inconsis-

tent.

What about the inclusion of irrelevant explana-

tory variables: for instance, if the true DGP in-

volves only X1, but we mistakenly include the

X2 variables as well? In that case, we are fail-

ing to impose the restrictions that b2 = 0, but



since in the population, β2 = 0, those restric-

tions are costless. The inclusion of X2 leaves

our estimates of b1 unbiased and consistent,

as is the estimate of σ2. What is the cost,

then, of overfitting the model and including

the additional variables? We lose degrees of

freedom, of course, and by ignoring the infor-

mation that the X2 variables do not belong in

the model, we generate less efficient estimates

of b1 than we would with the correctly specified

model. This is especially apparent if we have

K1 = K2 = 1 and the correlation between X1

and X2 is high. Mistakenly including X2 will

lead to quite imprecise estimates of b1.

Although there is some cost to overfitting a

model, it would appear that the costs of these

two types of specification error are quite asym-

metric, and that we would much rather err on

the side of caution (including additional vari-

ables) to avoid the severe penalties of underfit-

ting the model. Given this, a model selection



strategy that starts with a simple specifica-

tion and seeks to refine it by adding variables

is flawed, and the opposite approach: David

Hendry’s general-to-specific methodology has

much to recommend it. Although a very gen-

eral specification may be plagued by collinear-

ity, and a model with sufficient variables will

run afoul of the 5% type I error probability, it

is much more likely than a recursive simplifica-

tion strategy will yield a usable model at the

end of the specification search.

In dynamic models utilizing time-series data,

this advice translates into “do not underfit the

dynamics”. If the time form of a dynamic re-

lationship is not known with certainty, it would

be prudent to include a number of lagged val-

ues, and “test down” to determine whether

the longer lags are necessary. This will fol-

low a general-to-specific methodology, allow-

ing for the more complex dynamic specifica-

tion if it is warranted. Omitting higher-order



dynamic terms is a common cause of apparent

non–independence of the regression errors, as

signalled by residual independence tests.

One particular approach to possible functional

form misspecification is offered by Ramsey’s

RESET (regression specification error) test.

This test is simple: after a regression of y

on the regressors X, one adds polynomials in

the fitted values ŷ to the regression: for in-

stance, squares and cubes. Under the hypoth-

esis that the relationship between y and X is

adequately modeled as linear, the coefficients

on these additional regressors should not be

significantly different from zero. Since polyno-

mials in the regressors can approximate many

functions, a rejection in the RESET test may

also suggest the appropriateness of a nonlin-

ear specification: for instance, a log-linear or

double-log model. The RESET test may eas-

ily be performed in Stata via the estat ovtest

command.



A generalized RESET test

Mark Schaffer’s ivreset routine (available from

ssc) extends Ramsey’s RESET test to the case

of instrumental variables estimation. To quote

from his extensive help file:

The Ramsey (1969) RESET test is a standard

test of neglected nonlinearities in the choice

of functional form (sometimes, perhaps mis-

leadingly, also described as a test for omit-

ted variables; see estat ovtest and Wooldridge

(2002), pp. 124-5). The principle is to esti-

mate y = Xβ + Wγ + u and then test the sig-

nificance of γ. The Ws in a RESET test can

either be powers of X or, as implemented here,

powers of the forecast values of y.

As Pagan and Hall (1983) and Pesaran and

Taylor (1999) point out, a RESET test for

an IV regression cannot use the standard IV



predicted values Xβ̂ because X includes en-

dogenous regressors that are correlated with

u. Instead, the RESET test needs to be im-

plemented using “forecast values” of y that are

functions of the instruments (exogenous vari-

ables) only. Denote the full set of instruments

by Z (possibly including exogenous regressors

also in X).

In the Pagan–Hall version of the test, the fore-

cast values ŷ are the reduced form predicted

values of y, i.e., the predicted values Zπ̂ from

a regression of y on the instruments Z.

In the Pesaran–Taylor version of the test, the

forecast values ŷ are the “optimal forecast”

values. The optimal forecast (predictor) ŷ is

defined as X̂β̂ where β̂ is the IV estimate of the

coefficents and X̂ consists of the exogenous re-

gressors in X and the reduced form predicted

values of the endogenous regressors in X. The



latter are the predicted values Zπ̂ from regres-
sions of the endogenous Xs on the instruments
in Z. Note that if the equation is exactly iden-
tified, the optimal forecasts and reduced form
forecasts coincide, and the Pesaran–Taylor and
Pagan–Hall test statistics are identical.

In both the Pesaran–Taylor and Pagan–Hall
versions of the RESET test, the augmented
equation is y = Xβ + Wγ + u, where the W s
are the powers of yhaty. The default is to in-
clude ŷ2, but 3rd and 4th powers of y-hat can
be requested. This equation is estimated by
IV, and the default test statistic is a Wald test
of the significance of γ. Under the null that
there are no neglected nonlinearities and the
equation is otherwise well-specified, the test
statistic is distributed as χ2 with degrees of
freedom equal to the number of powers of ŷ.

Alternatively, Godfrey has suggested that a C-
test statistic (also known as a “GMM-distance”



or “difference-in-Sargan” test) be used to test

whether the powers of ŷ can be added to the

orthogonality or moment conditions that de-

fine the IV or OLS estimator (see Pesaran

and Smith, pp. 262-63). This test can be

requested with the cstat option. Under the

null that the equation is well-specified and has

no neglected nonlinearities, (J − J1) is dis-

tributed as χ2 with degrees of freedom equal

to the number of powers of ŷ, where J1 is the

Sargan–Hansen statistic for the original IV es-

timation and J is the Sargan–Hansen statistic

for the IV estimation using the additional or-

thogonality conditions provided by the powers

of ŷ.

If the equation was estimated using OLS or

HOLS (heteroskedastic OLS) and there there

are no endogenous regressors, ivreset reports

a standard Ramsey RESET test using the fit-

ted values of y, i.e., Xβ̂.



If the original equation was estimated using the

robust, cluster or bw options, so is the aug-

mented equation, and the RESET test statis-

tic will be heteroskedastic-, cluster-, and/or

autocorrelation-robust, respectively.


