
EC327: Financial Econometrics, Spring 2009

Wooldridge, Introductory Econometrics (4th ed, 2009)

Chapter 13:

Pooling cross sections over time

In EC228, we have discussed regressions esti-

mated from the two basic types of economic

datasets: cross sections and time series. Em-

pirical research is making broader use of richer

forms of data that possess both cross-sectional

and time dimensions. In this section of the

course, we will discuss some simple economet-

ric models which allow for pooling of cross

sections over time. Data with both cross-

sectional and time series characteristics can be

usefully employed to answer many questions

that we cannot address with data of one sort

or the other.



There are two types of data that have both

cross-sectional and time dimensions: indepen-

dently pooled cross sections (IPCS) and panel,

or longitudinal data. IPCS data represent the

results of, e.g., a repeated survey. Consider a

case where 5,000 likely voters are sampled each

week by CNN to determine their satisfaction

with the Bush administration’s policies on Iraq,

and we have 20 weeks of those survey data.

We have 100,000 observations, each identified

by a respondent code and the date on which it

was collected. Although the respondent codes

run from 1 to 5,000 each week, it is impor-

tant to note that Mr. 1,234 this week has no

relation to Mr. 1,234 next week or the week

after. These are independent surveys, each

representing a random sample from the popu-

lation, which rules out correlation in the error

terms within each survey’s observations. Only

by chance will the same individual appear more

than once in the pooled dataset, and even if



she does, we will not know it. Thus, we have

20 independent cross sections and may pool

them into a single dataset of 100,000 obser-

vations.

In contrast, a panel dataset differs meaning-

fully from IPCS. When panel data are collected,

information from the same individual units are

recorded at each point in time. The original

framework of this sort was a panel of fore-

casters who were surveyed each quarter. To-

day, panel data refer to not only individual-level

surveys but any dataset with the characteris-

tic of having t observations for each of i spe-

cific units. For instance, we could consider the

quarterly GDP growth rates of each of the G-8

countries for the last 10 years, or annual finan-

cial data for each of the Dow Jones Industrials

firms for each of the last 20 years. Panel data

are quite easily assembled for many economic

units: countries, states, cities, counties, school



districts, firms, or their officers (e.g., CEOs)

from readily available sources (see the Guide to

Economic and Financial Data at Boston Col-

lege link on the course home page). There are

also a number of sizable panel surveys available

from ICPSR the most celebrated of which is

the Panel Study of Income Dynamics, a house-

hold survey that has been carried out for over

25 years.

Although panel datasets are much more use-

ful in several ways than IPCS, they also bring

complexity from an econometric standpoint.

In a IPCS, each cross-section contains ran-

domly selected individuals from the population

at each point in time. Pooling those cross-

sections does not lead to any correlation of

observations’ errors over time. However, when

we work with panel data, we cannot assume

that observations are independently distributed

it over time. In individual-level data, the col-

lection of unobservable factors that affect an



individual’s wage will be present at each point

in time, leading to correlations across time

that we call unobserved heterogeneity. Con-

sequently, a number of econometric methods

have been developed to deal with these fea-

tures of the data.

Pooling independent cross sections over time

Surveys such as the Current Population Sur-

vey represent ICPS data, in the sense that a

random sample of U.S. households is drawn at

each time period. There are no links between

households appearing in the sample in 2004

and those appearing in 2005. What are the ad-

vantages of pooling? We gain sample size, of

course, which will increase the precision of esti-

mators if the relationships being estimated are

temporally stable. With that caveat, we can

use IPCS to draw inferences about the popu-

lation at more than a single point in time, and



make inferences about how U.S. households

behaved during the 1990s rather than just in

1995.

Temporal stability of any relationship may not

be reasonable, so we often allow for some vari-

ation across time periods: most commonly,

in the intercept term of the relationship for

each time period, which can readily be accom-

plished with indicator variables. The coeffi-

cients of those indicator variables themselves

may be of interest. Imagine that we had data

comprised of random samples of 200 BC se-

niors from class years 2000, 2001, . . . , 2005.

We know their graduating GPA their college,

age, gender, first year GPA and SAT score on

admission to Boston College. We can fit the

equation

gradGPAi = β0 +
2005∑

j=2001

βjYj + β1A&Si + β2Age +

β3Mi + β4fyGPAi + β5SATi + ui



where the variable Y2001 equals 1 for those

graduating in 2001, zero otherwise, and the

variable A&S equals 1 for Arts & Sciences

graduates and 0 for professional school gradu-

ates.

We are assuming that the effects of college,

age, gender, first year GPA and SAT score on

graduating GPA are constant over the six-year

interval. How would we interpret the coeffi-

cient on A&S? The indicator variables Y2001 . . . Y2005

allow the intercept in this relationship to shift

over time. The intercept for the class of 2000

is β0; the intercepts for each of the other years

add their indicators’ coefficients to that value.

How do we interpret these intercept terms in

the context of this equation? What does it

mean to say that the intercept of the relation-

ship is higher or lower in 2005 than it was in

2000?



The joint test of those indicator coefficients

equalling zero considers the hypothesis that

the intercept of this function is temporally sta-

ble. We perform that test conditional on the

assumption that the other coefficients do not

shift over time, which may be erroneous.

What would we conclude if some of the co-

efficients on the year indicator variables were

significantly positive? What would this repre-

sent?

How could we test that the benefit (or burden)

of being an A&S student varied over time? If

we found that it did, how should we respecify

the equation to take that variation into ac-

count? What would we conclude if a time-

varying A&S coefficient was increasing between

2001 and 2005?

We could, of course, interact all of the re-

gressors (college—SAT) with the year indica-

tor variables. If we run the regression in this



form, we get a single set of estimates, but each

year has its own regression coefficients. This

is quite similar to the notion of estimating the

equation separately for each year. Why, then,

would we run this regression? For one thing,

we probably want to test whether the coeffi-

cients on a certain variable are time-varying.

The only way to do that is in the context of

this interacted regression. We might find, for

example, that the effect of being in A&S differs

significantly over time, but the effects of age

or gender do not. If that is the case, then we

should apply the constraints of constant co-

efficients (and drop the related interactions)

from the model to gain efficiency. An F -test

of all interaction terms being jointly zero will

test the fully interacted model against the spe-

cial case of that model in which all coefficients

are temporally stable. If that F -test rejects its

null, we should allow for some (or all) of the

coefficients to vary over time.



The fully interacted model differs from a set

of separate regressions in one important as-

pect: it assumes homoskedasticity throughout

the IPCS. A set of separate regressions would

generate a set of σ2 estimates which would nu-

merically differ, and might differ statistically.

If they did, the pooled regression would suffer

from groupwise heteroskedasticity, the groups

being years. In the presence of groupwise het-

eroskedasticity, t- and F -tests based on the

pooled regression will be invalid. We should

test for that (e.g., robvar in Stata) and cor-

rect for it with feasible GLS or with robust

standard errors to ensure that the tests men-

tioned above will be valid.



Policy analysis with pooled cross sections

IPCS can be very useful in analyzing the effects

of policy changes or events. For instance, the

construction of an expressway or a commuter

rail line that reduces travel time to a distant

suburb is likely to affect property values. Like-

wise, the establishment of a Wal-Mart nearby

may have clear effects on local merchants’ rev-

enues and residents’ wages. If we have a cross-

section measure of these data collected prior

to a change and another collected following a

change, we may use regression techniques to

disentangle the effects properly attributable to

the change. We need not have the same units

in those cross-sections; for instance, a house

sale may be recorded in only one of the cross-

sections, a store may exist in one sample but

not the other, or a worker may relocate from

or into the area between measurements.



Summary statistics in this context are danger-

ous. Property values may have increased for

many reasons, as may the retail sales of local

merchants or the local unemployment rate (for

instance, a local manufacturing plant may have

closed in the same year that a new Wal-Mart

was hiring many local workers). Proponents of

a given strategy (pro or con) may readily “lie

with statistics” by using summary statistics or

aggregate measures. How can regression on

IPCS solve this problem?

Wooldridge provides the example of the con-

struction of an incinerator in a neighborhood of

North Andover, Mass. in 1981–1985. Data on

housing values are available for 1978 (before

planning for the incinerator was initiated) and

for 1981 (after its location and likely effects

were known). We would expect that house

prices closer to the incinerator might be de-

pressed. If an indicator variable nearinc mea-

sures proximity (e.g., if you live this close, you



might smell something or have ash falling on

your yard), we might näıvely regress

rprice1981 = γ0 + γ1nearinc + u (1)

using the 1981 real prices of houses which sold

that year. This regression is essentially the test

for the difference of two means: those closer to

and farther away from the incinerator. Does it

establish that the incinerator reduced property

values? By no means. It is likely that the in-

cinerator was built in the less desirable section

of North Andover, in which case we would ex-

pect that the preexisting homes would sell for

less in that neighborhood in any event. Indeed,

if we reestimate equation (1) using rprice1978

as the response variable, we find that prox-

imity to the incinerator lowered values in that

year—even though there was no plan or rumor

to build the unit at that time! Clearly, this

strategy is not appropriate because it fails to

take into account that housing prices are not

randomly distributed through the town.



We have established that in both 1978 and

1981 the γ1 coefficient is significantly negative.

The marginal effect of proximity to the estab-

lishment of the incinerator during that interval

is measured by the change in the coefficient

between 1978 and 1981. So we want to allow

γ1 to change over the interval. We pool the

two cross-sections and run a single regression:

rpricepooled = β0 + γ0d1981 +

β1nearinc + γ1nearinc · d1981 + u (2)

with d1981 as an indicator variable set to 1

for the 1981 observations and 0 for the 1978

observations.

This equation essentially allows both intercept

and slope of the housing price equation to shift

during that time. It implements the difference-

in-differences (DID) estimator:

γ1 = (p̄1981,n−p̄1981,f)−(p̄1978,n−p̄1978,f) (3)



where p is rprice, the real price of housing, and

the subscripts n and f represent houses near

and far from the incinerator, respectively.

At this point, we are estimating the means of

four groups of houses from our pooled sam-

ple: each of the terms in equation (3). We

would expect each parenthesized expression to

be negative since the neighborhood in which

the incinerator was sited appears to have lower

property values, cet. par., than the rest of the

town. But the marginal effect of the incinera-

tor is captured in the difference of these mea-

sured differences: the widening (or narrowing)

of the gap between those means. The coef-

ficient γ1 in equation (2) computes that DID

measure. If the incinerator depressed nearby

property values, then we would expect γ1 to

be negative.

When Kiel and McClain (JEEM, 1995) ran this

regression on 321 observations of the pooled



sample, they found a negative but not signifi-

cant coefficient. When they added additional

characteristics, such as the age of the house, or

the age and other characteristics (size, number

of rooms and baths, etc.) they found a clearly

significant negative coefficient, indicating that

the establishment of incinerator did indeed de-

press housing values in the neighborhood even

after controlling for a number of other factors.

If this equation was estimated with log(rpricepooled)

as the dependent variable, the coefficient γ1

becomes an estimate of the percentage ef-

fect. From this sample, the estimate (includ-

ing other housing characteristics) becomes −0.132,

or approximately 13%, with a significant t-

ratio.

Control vs. treatment groups

The DID estimator is applicable to any situa-

tion where we can view the outcome of a nat-

ural experiment: the effect of an exogenous



event, such as a policy change, on some eco-

nomic variables that measure individuals’ re-

sponses to that event. A natural experiment is

characterized by a control group, not affected

by the change, and a treatment group whose

members are affected by the change.

Unlike a controlled experiment, in which the re-

searcher may design the experiment to include

randomly selected members of each group, a

natural experiment requires the researcher to

work with those observations generated by eco-

nomic processes. For instance, the researchers

of the North Andover incinerator study had no

control over which houses would sell in 1978 or

in 1981 and generate price data for the sam-

ples. To the extent that some families may

have chosen to sell their houses in 1981 due

to the negative amenity now in their neighbor-

hood, we cannot consider housing transactions

as random events within the town.



The control group–treatment group setup leads

to a 2 × 2 table of categories: each group be-

fore and after the policy change. If we de-

fine indicator dT as defining membership in

the treatment group and indicator d2 as defin-

ing membership in the after-treatment cross-

section, we have the equation

y = β0 + γ0d2 + β1dT + γ1dT · d2 + u (4)

where we are likely to augment the equation

with other explanatory factors which we may

observe for each unit in the sample (for in-

stance, the size or number of rooms in the

house in the incinerator example).

This equation gives rise to the DID estimator

with the coefficients characterized as γ0 as the

change in the mean of the control group and

(γ0 + γ1) as the change in the mean of the

treatment group. These changes in the means

of the two groups are the differences. Their



difference—leading to DID—is γ1. In applica-

tion, we consider these changes to be in the

conditional means of y, conditioned on the var-

ious other explanatory factors that we include

in the equation.

We might, for instance, want to calculate the

impact of an increase on the cigarette tax on

consumption in one state. Smokers from that

state are the treatment group. In an adjoining

state, no change to cigarette taxes was im-

plemented during that period; smokers from

that state form the control group. We would

include a number of demographic factors in

each random sample to control for the possi-

bly different composition of the population of

smokers in each state. For instance, it might

be the case that median incomes in the treat-

ment group are lower than those in the control

group, so that the effect of the tax might be

a greater impact on their budgets. We also



would want to assume that cross-border sales

are not important, as they are in some cases

where tax treatments differ sizably across state

borders.

We now turn from the analysis of IPCS to

the simplest kind of panel data: the case in

which we have two successive measurements

on a cross-section of individual units.

Two-period panel data analysis

In its simplest form, panel data refers to mea-

surements of yi,t, t = 1,2: two cross-sections

on the same units, i = 1, . . . , N . Say that we

run a regression on one of the cross-sections.

Any regression may well suffer from omitted

variables bias: there are a number of factors

that may influence the cross-sectional outcome,

beyond the included regressors. One approach

would be to try to capture as many of those



factors as possible by measuring them and in-

cluding them in the analysis. For instance,

a city-level analysis of crime rates versus the

city’s level of unemployment might be aug-

mented with control variables such as city size,

age distribution, gender distribution and ethnic

makeup, education levels, historical crime rates

and so on.

An alternative approach would consider many

of these city-specific factors as unobserved het-

erogeneity, and use panel data from repeated

measurements on the same city to capture their

net effects. Some of those factors are time-

invariant (or approximately so), while some city-

specific factors will change over time. We can

deal with all of the time-invariant factors if

we have at least two measurements per city

by considering them as individual fixed effects.

Likewise, the net effect of all time-varying fac-

tors can be dealt with by a time fixed effect.



For a model (such as crime rate vs. unemploy-

ment rate) with a single explanatory variable,

yit = β0 + γ0d2t + β1Xit + ai + uit (5)

where the indicator variable d2t is zero for pe-

riod one and one for period two, not varying

over i. Both the y variable and the X variable

have both i and t subscripts, varying across

(e.g.) cities and the two time periods, as does

the error process u.

For the crime example, coefficient γ0 picks up

a macro effect: for instance, crime rates across

the U.S. may have varied, on average, between

the two time periods. The individual time ef-

fect picks that up.

The term ai is an individual fixed effect, with

a different value for each unit (city) but not

varying over time. It picks up the effect of

everything beyond X that makes a particular



city unique, without our having to specify what

those factors might be.

How might we estimate equation (5)? If we

merely pool the two years’ data and run OLS

we can derive estimates of the β and γ pa-

rameters, but are ignoring the ai term, which

is being included in the composite error term

vit = ai + uit. Unless we can be certain that

E(vit|Xit) = 0, the pooled approach will lead to

biased and inconsistent estimates. This zero

conditional mean assumption states that the

unobserved city-specific heterogeneity must not

be correlated with the X variable: in the ex-

ample, with the unemployment rate. But if a

city traditionally has suffered high unemploy-

ment and a shortage of good jobs, it may also

have historically high crime rates. This will

imply that this correlation is very likely to be

nonzero, and OLS will be biased.



This same argument applies if we use a sin-

gle cross section; as we described above, we

would be likely to ignore a number of impor-

tant quantifiable factors in estimating the sim-

ple regression from a cross-section of cities at

one point in time.

Therefore, we apply a strategy that will allow

for the presence of unobserved heterogeneity

and deal with it appropriately. There are two

approaches which we might follow, as we now

develop.

The first difference model

If we take the first difference of equation (5),

we arrive at

∆yit = γ0 + β1∆Xit + ∆uit (6)

where ∆ refers to the first difference operator,

zt − zt−1. When we difference the units vec-

tor multiplying β0, we get a vector of zeroes.



When we difference the vector d2t for each

city, we get 1, so that γ0 now becomes the in-

tercept for this equation. When we difference

the units vector multiplying ai, we get a vector

of zeroes—so that the unobserved heterogene-

ity term disappears in the differencing process,

solving the problem.

This first difference equation may be consis-

tently estimated with OLS given the usual zero

conditional mean assumption: in this context,

that E(∆ui|∆Xi) = 0. If X is strictly exoge-

nous, this assumption will be satisfied. If it

is weakly exogenous, it may be harder to es-

tablish this assumption. In particular, this as-

sumption rules out the case where a set of Xs

includes a lagged dependent variable, yt−1.

A second condition must be satisfied for equa-

tion (6) to be estimated: there must be time



variation in each of the X variables. Any time-

invariant effect will be captured by the ai term,

and differenced out. We can only include a sin-

gle time-invariant term for each unit in equa-

tion (5), in the form of ai. If we consider a

panel dataset of individual-level data, this im-

plies that time-invariant characteristics such as

gender or race cannot be included among the

regressors in X, since when differenced they

will disappear. As a corollary, regressors with

minimal time variation will be problematic. We

may include them in the regression, but they

are likely to have little explanatory power, since

their differences will have a small variance.

It is important to note that equation (6) refers

to a model in which the objective is no longer

the explanation of the variation in yit across

units and time, but rather the explanation of

the variation in ∆yi across units: that is, why

did some cities experience a large increase in



the crime rate between the two periods, while

others enjoyed a decline? Likewise, the regres-

sors only provide an explanation of that phe-

nomenon in terms of their changes over time.

Although coefficient β1 = ∂∆y/∂∆X, it also

equals the original ∂y/∂X from equation (5).

X will only play an important role if its changes

are systematically related to changes in y.

The model generalizes to the case where we

have multiple time-varying explanatory factors

in X, including the case where there may be

measurements for several past periods. For

instance, we might include the current unem-

ployment rate and two of its own lags in X.

This would require that we gather city-specific

data for this explanatory variable for four peri-

ods, since we would model crimeit as a function

of unempit, unempi,t−1, unempt−2 for t = 1,2.

We may estimate this model, in its general

form, with panel data that have been identi-

fied as such by tsset, using the D. operator to



specify the first differences of the variables in

the regress command. Alternatively, we may

use the user-written Stata command

xtivreg2 depvar indepvars , fd

with the fd option specifying the first-differenced

model. We need not have an instrumental vari-

ables problem in order to use this command.

Organization of panel data

For most panel data applications, we want to

organize the data in what Stata calls the long

format, in which data are stacked by panel.

There are two ways in which data indexed by

both i and t subscripts can be organized: in

the wide format, where variables from differ-

ent units are stored next to each other and

named by the unit to which they belong: e.g.,

GDPGermany, GDPFrance, etc.; or the long for-

mat, in which a single variable GDP is stored as

the timeseries for Germany, followed by that



for France, and so on. The long format will

naturally arise if you have data organized on

different spreadsheets, one for each unit, and

combine them vertically. However, there are a

number of instances where the data are pro-

vided in wide format, but you want to make

use of them with panel data techniques in long

format. In this case, you should use Stata’s

reshape command, which can either reshape

long or reshape wide, depending on the orig-

inal form of the data.

To reshape wide-format data into the long for-

mat, you must identify the time-series calendar

variable and have variable names for each unit

in some systematic form. For instance, if you

have variables GDPGermany, GDPFrance you can

specify that all variables named GDP... are to

be reshaped. But if you have named the vari-

ables GermanGDP and GDPFrance, they will have

to be renamed in order to use reshape.



To reshape data from long into wide format

(for instance, to produce a comparison table

or certain graphs) you must identify both the

time-series calendar variable and the panel unit

identifier. These two variables are those used

in the tsset command to instruct Stata that

this is panel data: e.g., tsset panelvar datevar. If

you are manually combining data from differ-

ent panel units (for instance, in a spreadsheet

environment) be sure to create the panel vari-

able before performing the combination. You

can also use Stata’s append command to com-

bine Stata-format data files for different units,

but again it is important to have a panel iden-

tifier variable in each Stata-format data file be-

fore doing the append.

The graphics command xtline is useful in that

it can produce line graphs of time series for

different panels with the data organized in long

format. For instance:



webuse grunfeld,clear

generate km = kstock/mvalue

xtline km if company < 5

A number of Stata’s graphics commands (in-

cluding tsline will work with data in wide for-

mat.

Policy analysis with two periods of panel data

Panel data sets—even with only two observa-

tion periods per panel unit—are very useful for

policy analysis and program evaluation. They

differ from IPCS in that we observe the same

individuals in both (or several) periods. Some

of these individuals are not affected by a par-

ticular program; they are the control group.

Other individuals are affected: the treatment

group. Wooldridge uses the example of a job

training program’s effect on worker productiv-

ity. The unit of observation is not the worker



but the firm, since job training grants were

given to specific firms. Productivity is mea-

sured by the scrap or defect rate. The more

productive are workers, the fewer defective prod-

ucts come off the assembly line. We measure

firms’ attributes in 1987 and 1988, leading to

the equation

scrapit = β0+γ0d1988+β1grantit+ai+uit (7)

where d1988 is an indicator variable for 1988

observations, and grantit is an indicator vari-

able for those firms who received grants in

1988 when the government program was initi-

ated.

The difficulty here is the unobserved hetero-

geneity at the firm level. Some firms will be

likely to have a higher or lower defect rate

in both years, as captured by the parameter

ai. We can remove this effect by differencing,

yielding

∆scrapit = γ0 + β1∆grantit + ∆uit (8)



The original intercept is removed by differenc-

ing, and since the difference of d1988 is 1 for all

differenced observations, the coefficient γ0 be-

comes the constant term. The term ∆grantit
is 1 for those firms in the treatment group and

0 for those firms in the control group. The co-

efficient β1 is negative (as theory predicts) but

not statistically significant. If the dependent

variable is expressed as log(scrapit), it becomes

statistically significant and implies an approxi-

mately 27.2% reduction in the scrap rate.

If we ignore the issue of unobserved hetero-

geneity and estimate equation (7) without the

ai term using pooled OLS, we find a positive

and insignificant effect of the job training pro-

gram. Since this differs so meaningfully from

the first-difference estimates, it seems clear

that firms are not randomly selected into the

treatment group. As one would hope, firms

with lower-ability workers are more likely to re-

ceive a job training grant.



In general terms, the strategy of program eval-

uation can be written as

yit = β0 + γ1d2t + β1progit + ai + uit (9)

where d2 is an indicator for the post-treatment

period and progit is an indicator of participa-

tion in the program under study. If units only

participated in the post-treatment period, we

find

b1 = ∆ytreat − ∆ycontrol (10)

where we calculate the average change in y

over the two time periods for the treatment

and control groups; the treatment effect is the

difference between those differences. Thus,

we have a panel version of the DID estimator,

with the important advantage that we can dif-

ference y values for the same individuals over

the time periods. If there are additional time-

varying factors for which we want to control,

we merely difference them and include them in



the estimated equation. All time-invariant fac-

tors are captured in the ai term and differenced

out.

The first difference model with more than two

time periods

We can also apply the FD model for three or

more time periods; if we have T observations

per individual, we will have N(T − 1) observa-

tions in the differenced data set, assuming a

balanced panel. We would include a separate

intercept for each time period. If the unob-

served heterogeneity term ai is correlated with

any of the explanatory variables, pooled OLS

on the levels dataset will yield biased and in-

consistent results.

The key assumption in applying the FD model

in this context is that cov(xitj, uis) = 0 ∀ t, s, j.

That is, the idiosyncratic errors attached to



each observation (unit and time period) are

uncorrelated with past, present and future val-

ues of the set of explanatory variables x, which

are assumed to be strictly exogenous. This

rules out the case where one of the explana-

tory variables is lagged y, since it cannot be

strictly exogenous with respect to uit.

Why is pooled OLS, ignoring ai, inconsistent?

Because ai is likely to be correlated with one or

more elements of x, which implies that x will be

correlated with the composite error (ai + uit).

We eliminate this correlation in the FD model

by differencing ai out of the equation, which

can then be estimated by pooled OLS. If we

start with the levels equation for three periods

yit = γ1+γ2d2t+γ3d3t+β1xit1+. . .+βkxitk+ai+uit

(11)

where γ1 is the intercept for period 1, γ1 + γ2

is the intercept for period 2, and γ1 + γ3 is the



last period’s intercept. When differenced, this

equation yields

∆yit = γ2∆d2t+γ3∆d3t+β1∆xit1+. . .+βk∆xitk+∆uit

(12)

Note that ∆d2t takes on a value of 1 for pe-

riod 2 and -1 for period 3, while ∆d3t is 0 for

period 2 and 1 for period 3. There is no in-

tercept in this formulation, but since we can

write γ2∆d2t + γ3∆d3t in terms of an inter-

cept α0 and a term α1d3t, we may prefer this

form so that an intercept can be included in

the pooled OLS regression. With more than

three time periods, we would include an inter-

cept and T − 2 time indicators (for all but the

first two periods).

Although the FD model may be quite useful in

evaluating program outcomes in multi-period

panel datasets, we should be aware that there

are pitfalls as well. Variables with little time



variation will not be useful in such a model,

since their differences may be quite small. If

explanatory variables are measured with error,

their differences may be overpowered by dif-

ferences in measurement error over time. In

that respect, the FD model may be worse than

pooled OLS in terms of bias. Nevertheless,

the model has been applied in many contexts

where it has proven to be quite successful: see

the textbook examples (13.8, 13.9) of the ef-

fects of enterprise zones on local unemploy-

ment rates, and the effects of various policy

changes on local crime rates.


