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Chapter 14:

Advanced panel data methods

Fixed effects estimators

We discussed the first difference (FD) model

as one solution to the problem of unobserved

heterogeneity in the context of panel data. It is

not the only solution; the leading alternative is

the fixed effects model, which will be a better

solution under certain assumptions.

For a model with a single explanatory variable,

yit = β1xit + ai + uit (1)



If we average this equation over time for each

unit i, we have

ȳit = β1x̄it + āi + ūit (2)

Subtracting the second equation from the first,

we arrive at

yit − ȳit = β1(xit − x̄it) + (uit − ūit) (3)

defining the demeaned data on [y, x] as the ob-

servations of each panel with their mean values

per individual removed. This algebra is known

as the within transformation, and the estima-

tor we derive is known as the within estimator.

Just as OLS in a cross-sectional context only

“explains” the deviations of y from its mean

ȳ, the within estimator’s explanatory value is

derived from the comovements of y around

its individual-specific mean with x around its

individual-specific mean. Thus, it matters not

if a unit has consistently high or low values of

y and x. All that matters is how the variations

around those mean values are correlated.



Just as in the case of the FD estimator, the

within estimator will be unbiased and consis-

tent if the explanatory variables are strictly ex-

ogenous: independent of the distribution of u

in terms of their past, present and future val-

ues. Correlation with ai is allowable since that

term will be removed in the within transforma-

tion.

The within estimator is implemented by Stata’s

command xtreg, fe (fe for fixed effects). The

within transformation implements what has of-

ten been called the LSDV (least squares dummy

variable) model because the regression on de-

meaned data yields the same results as esti-

mating the model from the original data and a

set of (N−1) indicator variables for all but one

of the panel units. It is often not workable to

estimate that LSDV model directly because we

may have hundreds or thousands of individual

panel units in our dataset. We can always per-

form the within transformation for any number



of units, though, and implement the FE model.

Note that the degrees of freedom for such a

model will take account of the N means that

were estimated, one for each individual. Thus,

unlike pooled OLS where the number of de-

grees of freedom would be (NT − k), the de-

grees of freedom for the FE estimator will be

(N(T − 1) − k). In Stata’s implementation in

xtreg, fe, a constant term is included and a F -

test is provided for the null hypothesis that all

coefficients a
′
i are zero, where a

′
i are deviations

from the mean value āi.

Analogous to the FD model, we cannot include

time-invariant variables in the FE model, since

the demeaning process will cause their value

to be zero for all time periods. We can inter-

act such variables with time-varying variables,

though. We could interact a gender indicator

with time dummies, which would allow us to

estimate how the effect of gender has changed



over the time periods. We cannot estimate the

effect of gender in the base period, though,

since that is subsumed in the ai term.

If we introduce a full set of (T − 1) time dum-

mies (one for each period but the first), we

cannot include any explanatory variables that

have a constant difference over time for each

individual: e.g., age in an annual dataset. The

same would be true if we introduced a linear

time trend rather than time dummies: it ab-

sorbs all time-constant effects.

Fixed effects or first differencing?

Two competing methods: first differencing and

fixed effects. Which should we use? If T=2,

it does not matter, since FD and FE meth-

ods are identical in that case. When T ≥
3, the two methods do not yield the same



results, but they are both unbiased estima-

tors of the underlying coefficient vector. Both

are consistent with T fixed as N → ∞. For

large N and small T (a common setup in many

datasets) we might be concerned with relative

efficiency. When the uit are serially uncorre-

lated (given that they are homoskedastic, this

amounts to saying they are i.i.d.) FE will be

more efficient than FD, and the standard er-

rors reported from FE are valid. We often may

assume serially uncorrelated errors, but there

is no reason why that condition will necessarily

hold in the data. If uit follows a random walk

process, then its differences will be uncorre-

lated, and first differencing will be the appro-

priate estimator. But we may often encounter

an error process with some serial correlation,

but not necessarily a random walk process.

When T is large and N is not very large (for

instance, when we have many time periods



of data on each of a small number of units)

we must be careful in using the FE estima-

tor, since its large-sample justification relies on

N → ∞, not T. If FE and FD give substan-

tively different results, it might be very hard

to choose between them, and we might want

to report them both.

One consideration arises when we are using an

unbalanced panel—especially one in which the

missing observations on some units do not ap-

pear at the beginning or end of their time se-

ries, but create “gaps” in the time series. The

FE estimator has no problem with this, but the

FD estimator will lose two observations when

there is a single period missing in the sequence

of observations for that unit. One thing we

must consider is why the data are missing. If

they can be considered “missing at random”,

this may not be problematic, but if there is

some pattern to missingness we must be con-

cerned about it.



One issue that often arises with individuals or

firms is attrition: units leaving the sample.

Individuals can die; firms can liquidate or be

taken over. Are these events related to the

variables we are using in the regression model?

If so, we may want to worry about the sample

selection problem that this entails. Neverthe-

less, one advantage of fixed effects is that it

allows the attrition to be correlated with ai,

the unobserved fixed effect.

Two-way fixed effects

Stata lacks a command to estimate two-way

fixed effects models. If the number of time

periods is reasonably small, you may estimate

a two-way FE model by creating a set of time

indicator variables and including all but one in

the regression.

The joint test that all of the coefficients on

those indicator variables are zero will be a test



of the significance of time fixed effects. Just

as the individual fixed effects (LSDV) model

requires regressors’ variation over time within

each unit, a time fixed effect (implemented

with a time indicator variable) requires regres-

sors’ variation over units within each time pe-

riod. If we are estimating an equation from

individual or firm microdata, this implies that

we cannot include a “macro factor” such as

the rate of GDP growth or price inflation in

a model with time fixed effects, since those

factors do not vary across individuals.

Random effects models

As an alternative to the individual fixed effects

model, we may consider a random effects for-

mulation. For a single explanatory variable,

this becomes

yit = β0 + β1xit + [ai + uit] (4)



where we explicitly include an intercept so that

we can make the assumption that the unob-

served effect, ai, has a zero mean. The brack-

eted term is the composite error term, which

is now assumed to have an individual-specific

component and an idiosyncratic component.

In the fixed effects formulation, ai is treated

as an unknown “nuisance parameter” which, if

ignored, causes bias and inconsistency in our

estimators because it is correlated with one or

more of the regressors. In the fixed effects

within transformation we get rid of ai. But if

we can assume that ai is a random variable dis-

tributed independently of x (or generally inde-

pendent of all of the regressors), we can derive

a more efficient estimator of the problem than

fixed effects.

The random effects model then proceeds by

using the form of the composite error term



in an optimal manner. For instance, with the

assumption of independence, we could use a

single cross section to optimally estimate the

β vector; there would be no need for panel

data. That would discard information from

other cross sections, so we might rather want

to use pooled OLS, which will be consistent

in this case. But pooled OLS will not make

optimal use of the assumed structure in the

error term. The composite error term assumes

that the errors arise for two reasons: one of

them common to all observations on a single

individual, the other purely idiosyncratic.

If we define the composite error term vit =

ai + uit as the regression error, the vit series

must be serially correlated. Under the random

effects assumptions,

corr(vit, vis) =
σ2

a

(σ2
a + σ2

u)
∀ t 6= s (5)



and this correlation will be positive whenever

σ2
a is nontrivial. Indeed, in a case where a large

fraction of the variation in the composite er-

ror term is due to the individual-specific com-

ponent, this correlation can be quite substan-

tial. Since the standard errors of a pooled OLS

model ignore it, they will be biased.

Just as in other cases where we can explicitly

model the form of serial correlation in the error

process, we can use generalized least squares

(GLS) to solve this problem. Although the

algebra to derive the GLS estimator is quite

complex, the GLS transformation itself is sim-

ple. If we define

λ = 1−

√√√√( σ2
u

(σ2
u + Tσ2

a)

)
(6)

we will generate a weight λ, 0 ≤ λ ≤ 1. The

transformed equation is then defined in the



quasi-demeaned y and x variables:

(yit−λȳt) = β0(1−λ)+β1(xit−λx̄t)+(vit−λv̄t)

(7)

where the overbar denotes the averages over

time for each panel unit, just as in the fixed

effects model.

The fixed effects (FE) model arbitrarily sets

λ = 1 and fully demeans the data. As we

can see from equation (??), that would be ap-

propriate in this context iff the idiosyncratic

error variance was very small relative to the

variance of the individual effect ai. In other

cases, where both sources of variance are non-

negligible, the optimal λ will be less than one.

We can also consider the pooled OLS model

in this context; it corresponds to a λ = 0 in

which we do not transform the data at all.

Arbitrarily setting λ = 1 à la FE leads to a

consistent estimator of the equation, but it is



inefficient relative to the RE alternative. Be-

cause the FE model is equivalent to the LSDV

formulation, it involves the loss of N degrees

of freedom. Given that the ai may be consid-

ered as nuisance parameters, if we do not care

about their values, we might rather apply RE

and substantially reduce the degrees of free-

dom lost in estimation: especially important if

T is small.

We do not know λ, of course, so we must con-

sistently estimate it. The ability to do so in-

volves the crucial assumption that cov(xit, ai) =

0: the unobservable individual effects must be

independently distributed of the regressors. If

our estimate of λ is close to zero, the RE esti-

mates will be similar to those of a pooled OLS

model. If our estimate of λ is close to one,

the RE estimates will be similar to those of a

FE model. The RE estimator may be chosen

in Stata by giving the command xtreg depvar



indepvars, re. The estimated results will dis-
play an estimate of λ. In the example of a
wage equation given in the textbook (14.4), a
λ̂ = 0.643 is displayed, indicating that the RE
estimates are likely to differ considerably from
both pooled OLS and FE counterparts.

One interesting feature of the random effects
estimator, evident in that example: since it
involves quasi-demeaning of the data, a vari-
able without time variation within the individ-
ual may be included in the model. Thus, if
we are estimating a wage equation, we can in-
clude gender or race in a RE model, whereas it
cannot be included in a FE model. However,
we must ensure than any such variable satisfies
the assumption that cov(xit, ai) = 0.

Random effects or fixed effects?

To justify RE, the necessary assumption that
an individual effect can be considered indepen-
dent of all regressors is often problematic. If



we are interested in testing the effect of a time-

invariant variable, RE can yield such an esti-

mate, but we should include all available time-

invariant variables as controls to try to ensure

that the independence assumption is satisfied.

If we are interested in evaluating the effect of a

time-varying explanatory variable, can we jus-

tify the use of RE? Yes, but in realistic terms

probably only in the case where the key vari-

able is set randomly. For instance, if students

are assigned randomly to sections of a course

or home rooms in a K-12 context, RE would

be appropriate given that the assignment vari-

able would not be correlated with unobserv-

ables such as aptitude. On the other hand, if

students are grouped by ability or test scores

and assigned to home rooms accordingly, the

assignment variable will not be independent of

the unobservable individual aptitude, and RE

will be inconsistent.



We can formally evaluate the appropriateness

of the RE estimator in a given context with a

Hausman test. A Hausman test compares the

coefficient vectors from two estimators. If they

are both consistent estimators, then their point

estimates should not differ greatly, whereas if

one of the estimators is inconsistent, its point

estimates are likely to differ widely from those

of a consistent estimator. In the current con-

text, the FE estimator is always consistent,

but inefficient under the null hypothesis that

cov(xit, ai) = 0. RE is both consistent and rel-

atively efficient under that null hypothesis, but

inconsistent under the alternative. To evaluate

the null hypothesis, we give the commands

xtreg depvar indepvars1, fe

estimates store fe

xtreg depvar indepvars2, re

estimates store re

hausman fe re, sigmamore



where we note that indepvars1 may not contain

all of the regressors in indepvars2 because the

RE estimator may also estimate time-invariant

effects. It is crucial that the two sets of es-

timates’ names be given in the order shown,

with the always-consistent estimator first in

the hausman command.

The null hypothesis for the Hausman test is

that RE is consistent and should be preferred.

If we reject that null, RE is inappropriate and

FE should be used instead. However, like many

tests, the Hausman test is performed condi-

tional on proper specification of the underly-

ing model. If we have omitted an important

explanatory variable from both forms of the

model, then we are comparing two inconsistent

estimators of the population model. When a

rejection is received, specification tests should

be used to try to rule out this possibility.



We might consider RE as more appropriate

when applied to a random sample of individ-

uals (such as a sample of workers, or the un-

employed, or those who have completed a job

training program), and FE the better choice

when we consider observations corresponding

to a mutually exhaustive set of units: e.g.,

states of the US. If we have a dataset con-

taining all 50 states’ values, it is not a random

sample; it encompasses the entire population.

We may want to allow for a state-specific in-

tercept term, and the FE (a/k/a LSDV) esti-

mator is a simple way to accomplish this.

Panel data methods for other data structures

We have considered the FD, FE and RE es-

timators as appropriate for strict panel data:

those possessing both individual and time sub-

scripts. But we may have datasets that do

not possess a time element at all, but rather



a cross-sectional clustering variable (such as

siblings within each family, or workers within

each plant). Conceptually, we can apply any

of these three panel data estimators in this

context to take account of a common “fam-

ily effect” or “plant effect”. We cannot use

tsset to declare such data as being panel data

in Stata, but we can use the i(panelvar) op-

tion on any form of xtreg to designate the

panel identifier. Just as the standard panel

setup considers the likelihood that the individ-

ual’s identity will give rise to unobserved het-

erogeneity in the form of ai, we may consider

it as likely that belonging to a particular family

or working in a specific plant may have its own

effect.

An alternative, available in most estimation

commands in Stata, is the notion of cluster-

ing. We may consider families or plants in the

prior example of clusters: groups within which



errors are likely to be correlated with one an-

other. The cluster covariance matrix estima-

tor allows for error variances to differ between

clusters (but not within clusters), as well as

allowing for correlations between errors in the

same cluster (but not between clusters). Ig-

noring these correlations will cause estimated

standard errors to be biased and inconsistent.

It may be invoked in regress and many other

commands with the ,cluster(id) option, where

id specifies the name of an integer variable

denoting cluster membership. The values of

id need not be consecutive. When estimat-

ing cluster standard errors, it is important that

there are more clusters than regressors in the

model. In practical terms, this rules out the

case that a panel identifier is specified as the

cluster id and individual-specific constant terms

are estimated. However, that does not rule out

use of the cluster option in a FE mode because



that model does not literally estimate the N

fixed effects among the regressors.

Seemingly unrelated regressions (SURE)

We often have a situation in which we want to

estimate a similar specification for a number of

different units: for instance, the estimation of

a production function or cost function for each

industry. If the equation to be estimated for

a given unit meets the zero conditional mean

assumption, we may estimate each equation

independently. However, we may want to es-

timate the equations jointly: first, to allow

cross-equation restrictions to be imposed or

tested, and second, to gain efficiency, since

we might expect the error terms across equa-

tions to be contemporaneously correlated.Such

equations are often called seemingly unrelated

regressions, and Zellner proposed an estimator

for this problem: the SUR estimator. Unlike



the fixed effects and random effects estima-

tors, whose large-sample justification is based

on “small T, large N” datasets as N →∞, the

SUR estimator is based on the large-sample

properties of “large T, small N” datasets as

T →∞. In that context, it may be considered

a multiple time series estimator.

Equation i of the SUR model is:

yi = Xiβi + εi, i = 1, . . . , N (8)

where yi is the ith equation’s dependent vari-

able and Xi is the matrix of regressors for the

ith equation, on which we have T observations.

The disturbance process ε = [ε′1, ε′2, . . . , ε′N ]′ is

assumed to have an expectation of zero and

a covariance matrix of Ω. We will only con-

sider the case where we have T observations

per equation, although it is feasible to estimate

the model with an unbalanced panel. Note also

that although each Xi matrix will have T rows,



it may have Ki columns. Each equation may
have a differing set of regressors, and apart
from the constant term, there might be no
variables in common across the Xi. Note that
the application of SUR requires that the T ob-
servations per unit must exceed N , the number
of units, in order to render Ω of full rank and
invertible. If this constraint is not satisfied,
SUR cannot be employed.

We assume that E[εitεjs] = σij, t = s, other-
wise zero. This implies that we are allowing
for the error terms in different equations to
be contemporaneously correlated, but assum-
ing that they are not correlated at other points
(including within a unit: they are assumed in-
dependent). Thus for any two error vectors,

E[εiε
′
j] = σijIT

Ω = Σ⊗ IT (9)

where Σ is the VCE of the N error vectors and
⊗ is the Kronecker matrix product (For any



matrices AK×L, BM×N , A⊗B = CKM×LN . To

form the product matrix, each element of A

scalar multiplies the entire matrix B).

The efficient estimator for this problem is gen-

eralized least squares (GLS), in which we may

write y as the stacked set of yi vectors, and X

as the block-diagonal matrix of Xi. Since the

GLS estimator is

bGLS = [X ′Ω−1X][X ′Ω−1y] (10)

and

Ω−1 = Σ−1 ⊗ I (11)

We can write the (infeasible) GLS estimator

as

bGLS = [X ′(Σ−1⊗ I)X]−1[X ′(Σ−1⊗ I)y] (12)

which if expanded demonstrates that each block

of the X ′
iXj matrix is weighted by the scalar

σ−1
ij . The large-sample VCE of bGLS is the first

term of this expression.



When will this estimator provide a gain in effi-

ciency over equation-by-equation OLS? First,

if the σij, i 6= j are actually zero, there is no

gain. Second, if the Xi matrices are identical

across equations—not merely having the same

variable names, but containing the same nu-

merical values—then GLS is identical to equation-

by-equation OLS, and there is no gain. Be-

yond these cases, the gain in efficiency de-

pends on the magnitude of the cross-equation

contemporaneous correlations of the residuals.

The higher are those correlations, the greater

the gain. Furthermore, if the Xi matrices’

columns are highly correlated across equations,

the gains will be smaller.

The feasible SUR estimator requires a consis-

tent estimate of Σ, the N × N contempora-

neous covariance matrix of the equations’ dis-

turbance processes. The representative ele-

ment σij, the contemporaneous correlation be-



tween εi, εj, may be estimated from equation-

by-equation OLS residuals as

sij =
e′iej

T
(13)

assuming that each unit’s equation is estimated

from T observations. These estimates are then

used to perform the “Zellner step”, where the

algebra of partitioned matrices will show that

the Kronecker products may be rewritten as

products of the blocks in the expression for

bGLS. The estimator may be iterated. The

GLS estimates will produce a new set of resid-

uals, which may be used in a second Zell-

ner step, and so on. Iteration will make the

GLS estimates equivalent to maximum likeli-

hood estimates of the system.

The SUR estimator is available in Stata via the

sureg command. It is a panel data estimator

applicable to data in the wide format. If the



data are set up in the long format more com-

monly used with panel data, the reshape com-

mand may be used to place them in the “wide”

format. It is an attractive estimator relative to

pooled OLS, or even in comparison with fixed

effects, in that SUR allows each unit to have

its own coefficient vector. Not only the con-

stant term differs from unit to unit, but each

of the slope parameters differ as well across

units, as does σ2
ε , which is constrained to be

equal across units in pooled OLS, fixed effects

or random effects estimators.

Standard F -tests may be used to compare the

unrestricted SUR results with those that may

be generated in the presence of linear con-

straints, such as cross-equation restrictions (see

constraint). Cross-equation constraints corre-

spond to the restriction that a particular re-

gressor’s effect is the same for each panel unit.

The isure option may be used to iterate the

estimates, as described above.



SUR with identical regressors

The second case discussed above in which SUR

will generate the same point and interval estimates—

the case of numerically identical regressors—

arises quite often in economic theory and finan-

cial theory. For instance, the demand for each

good should depend on the set of prices and

income, or the portfolio share of assets held in

a given class should depend on the returns to

each asset and on total wealth. In this case,

there is no reason to use anything other than

OLS in terms of efficiency. However, SUR es-

timation is often employed in this case, since it

allows for tests of cross-equation constraints,

or estimation with those constraints in place.

If we try to apply SUR to a system with (nu-

merically) identical regressors, such as a com-

plete set of cost share or portfolio share equa-

tions, the SUR estimator will fail because the



error covariance matrix is singular. This holds

not only for the unobservable errors, but also

for the least squares residuals. A bit of alge-

bra will show that if there are adding-up con-

straints across equations—for instance, if the

set of yi variables are a complete set of port-

folio shares or demand shares—then the OLS

residuals will sum to zero across equations, and

their empirical covariance matrix will be singu-

lar by construction.

We may still want to utilize systems estima-

tion in order to impose the cross-equation con-

straints arising from economic theory. In this

case, the appropriate estimation strategy is to

drop one of the equations and estimate the

system of (N − 1) equations with SUR. The

parameters of the N th equation, in point and

interval form, can be algebraically derived from

those estimates. The feasible GLS estimates

will be sensitive to which equation is dropped,



but iterated SUR will restore the invariance
property of the maximum likelihood estimator
of the problem.

Dynamic panel data models

A serious difficulty arises with the one-way fixed
effects model in the context of a dynamic panel
data (DPD) model: one containing a lagged
dependent variable (and possibly other regres-
sors), particularly in the “small T , large N”
context. As Nickell (1981) shows, this arises
because the demeaning process which subtracts
the individual’s mean value of y and each X

from the respective variable creates a correla-
tion between regressor and error. The mean of
the lagged dependent variable contains obser-
vations 0 through (T − 1) on y, and the mean
error—which is being conceptually subtracted
from each εit—contains contemporaneous val-
ues of ε for t = 1 . . . T . The resulting correla-
tion creates a bias in the estimate of the coeffi-
cient of the lagged dependent variable which is



not mitigated by increasing N , the number of

individual units. In the simplest setup of a pure

AR(1) model without additional regressors:

yit = β + ρyi,t−1 + ui + εit (14)

yit − yi· = ρ(yi,t−1 − yi,·−1) + (εit − εi·)

The demeaning operation creates a regressor

which cannot be distributed independently of

the error term. Nickell demonstrates that the

inconsistency of ρ̂ as N → ∞ is of order 1/T ,

which may be quite sizable in a “small T” con-

text. If ρ > 0, the bias is invariably negative,

so that the persistence of y will be underesti-

mated. For reasonably large values of T , the

limit of (ρ̂ − ρ) as N → ∞ will be approxi-

mately −(1+ ρ)/(T − 1): a sizable value, even

if T = 10. With ρ = 0.5, the bias will be -

0.167, or about 1/3 of the true value. The

inclusion of additional regressors does not re-

move this bias. Indeed, if the regressors are

correlated with the lagged dependent variable



to some degree, their coefficients may be se-

riously biased as well. Note also that this bias

is not caused by an autocorrelated error pro-

cess ε. The bias arises even if the error pro-

cess is i.i.d. If the error process is autocorre-

lated, the problem is even more severe given

the difficulty of deriving a consistent estimate

of the AR parameters in that context. The

same problem affects the one-way random ef-

fects model. The ui error component enters

every value of yit by assumption, so that the

lagged dependent variable cannot be indepen-

dent of the composite error process.

A solution to this problem involves taking first

differences of the original model. Consider a

model containing a lagged dependent variable

and a single regressor X:

yit = β1 + ρyi,t−1 + Xitβ2 + ui + εit (15)



The first difference transformation removes both

the constant term and the individual effect:

∆yit = ρ∆yi,t−1 + ∆Xitβ2 + ∆εit (16)

There is still correlation between the differ-

enced lagged dependent variable and the dis-

turbance process (which is now a first-order

moving average process, or MA(1)): the for-

mer contains yi,t−1 and the latter contains εi,t−1.

But with the individual fixed effects swept out,

a straightforward instrumental variables esti-

mator is available. We may construct instru-

ments for the lagged dependent variable from

the second and third lags of y, either in the

form of differences or lagged levels. If ε is i.i.d.,

those lags of y will be highly correlated with the

lagged dependent variable (and its difference)

but uncorrelated with the composite error pro-

cess. Even if we had reason to believe that ε

might be following an AR(1) process, we could

still follow this strategy, “backing off” one pe-

riod and using the third and fourth lags of y



(presuming that the timeseries for each unit is
long enough to do so).

The DPD (Dynamic Panel Data) approach of
Arellano and Bond (1991) is based on the no-
tion that the instrumental variables approach
noted above does not exploit all of the informa-
tion available in the sample. By doing so in a
GMM context, we may construct more efficient
estimates of the dynamic panel data model.
The Arellano–Bond estimator can be thought
of as an extension of the Anderson–Hsiao es-
timator implemented by xtivreg, fd. Arellano
and Bond argue that the Anderson–Hsiao es-
timator, while consistent, fails to take all of
the potential orthogonality conditions into ac-
count. Consider the equations

yit = Xitβ1 + Witβ2 + vit

vit = ui + εit (17)

where Xit includes strictly exogenous regres-
sors, Wit are predetermined regressors (which



may include lags of y) and endogenous regres-

sors, all of which may be correlated with ui, the

unobserved individual effect. First-differencing

the equation removes the ui and its associated

omitted-variable bias. The Arellano–Bond es-

timator sets up a generalized method of mo-

ments (GMM) problem in which the model is

specified as a system of equations, one per

time period, where the instruments applicable

to each equation differ (for instance, in later

time periods, additional lagged values of the

instruments are available). The instruments

include suitable lags of the levels of the en-

dogenous variables (which enter the equation

in differenced form) as well as the strictly ex-

ogenous regressors and any others that may be

specified. This estimator can easily generate

an immense number of instruments, since by

period τ all lags prior to, say, (τ − 2) might be

individually considered as instruments. If T is

nontrivial, it is often necessary to employ the



option which limits the maximum lag of an in-

strument to prevent the number of instruments

from becoming too large. This estimator is

available in Stata as xtabond.

A potential weakness in the Arellano–Bond DPD

estimator was revealed in later work by Arel-

lano and Bover (1995) and Blundell and Bond

(1995). The lagged levels are often rather

poor instruments for first differenced variables,

especially if the variables are close to a random

walk. Their modification of the estimator in-

cludes lagged levels as well as lagged differ-

ences. The original estimator is often entitled

difference GMM, while the expanded estimator

is commonly termed System GMM. The cost

of the System GMM estimator involves a set of

additional restrictions on the initial conditions

of the process generating y.



Both the difference GMM and System GMM

estimators have one-step and two-step vari-

ants. The two-step estimates of the differ-

ence GMM standard errors have been shown to

have a severe downward bias. If the precision

of the two-step estimators is to be evaluated

for hypothesis tests, we should ensure that

the “Windmeijer finite-sample correction” (see

Windmeijer (2005)). to these standard errors

has been applied. All of the features described

above are available in David Roodman’s im-

proved version of official Stata’s estimator. His

version, xtabond2, offers a much more flexible

syntax than official Stata’s xtabond, which does

not allow the same specification of instrument

sets, nor does it provide the System GMM

approach or the Windmeijer correction to the

standard errors of the two-step estimates.


