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Survival Analysis and Hazard Modelling

We consider the modelling of time-to-event

data, otherwise known as transition data (or

survival time data or duration data). We con-

sider a particular life-course domain which may

be partitioned into a number of mutually ex-

clusive states at each point in time. With the

passage of time, individuals move (or do not

move) between these states. For instance, the

domain of marriage includes the states mar-

ried, cohabiting, separated, divorced, and sin-

gle. The domain of paid employment includes

the states employed, self-employed, unemployed,

inactive and retired.



For each given domain, the patterns for each

individual are described by the time spent within

each state, and the dates of each transition

made (if any). The length of each “spell”

shows the time spent within each state, i.e.

spell lengths, or spell durations, or survival times.

More generally, we could imagine having this

sort of data for a large number of individuals

(firms or other analytical units), together with

information that describes the characteristics

of these individuals to be used as explanatory

variables in multivariate models.

We consider the methods used to model tran-

sition data, and the relationship between tran-

sition patterns and characteristics. In general,

there may be multiple states (with multi-state

transitions) and repeat spells: an individual

may be married more than once, for instance.

To simplify matters, we shall focus on models

to describe survival times within a single state,



and assume that we have single spell data for

each individual. Thus, for the most part, we

consider exits from a single state to a single

destination

Some common assumptions:

1. the chances of making a transition from

the current state do not depend on tran-

sition history prior to entry to the current

state (there is no state dependence).

2. entry into the state being modelled is ex-

ogenous: there are no ‘initial conditions”

problems. Otherwise the models of sur-

vival times in the current state would also

have to take account of the differential

chances of being found in the current state

in the first place.



3. the model parameters describing the tran-

sition process are fixed, or can be param-

eterized using explanatory variables: the

process is stationary.

The models that have been specially devel-

oped or adapted to analyze survival times are

distinctive largely because they need to take

into account some special features of the data,

both the dependent variable for analysis (sur-

vival time itself), and also the explanatory vari-

ables used in multivariate models. Let us con-

sider these features in turn.

Survival time data may be derived in a num-

ber of different ways, and the way the data are

generated has important implications for anal-

ysis. There are four main types of sampling

process providing survival time data:



1. Stock sample: Data collection is based upon

a random sample of the individuals that are

currently in the state of interest, who are

typically (but not always) interviewed at

some time later, and one also determines

when they entered the state (the spell start

date). For example, when modelling the

length of spells of unemployment insurance

(UI) receipt, one might sample all the indi-

viduals who were in receipt of UI at a given

date, and also find out when they first re-

ceived UI (and other characteristics).

2. Inflow sample: Data collection is based on

a random sample of all persons entering

the state of interest, and individuals are fol-

lowed until some pre-specified date (which

might be common to all individuals), or

until the spell ends. For example, when

modelling the length of spells of receipt of



unemployment insurance (UI), one might
sample all the individuals who began a UI
spell.

3. Outflow sample: Data collection is based
on a random sample of those leaving the
state of interest, and one also determines
when the spell began. For example, to con-
tinue our UI example, the sample would
consist of individuals leaving a UI spell.

4. Population sample: Data collection is based
on a general survey of the population (i.e.
where sampling is not related to the pro-
cess of interest), and respondents are asked
about their current and/or previous spells
of the type of interest (starting and ending
dates).

Data may also be generated from combina-
tions of these sample types. For example, the



researcher may build a sample of spells by con-
sidering all spells that occurred between two
dates, for example between 1 January and 1
June of a given year. Some spells will already
be in progress at the beginning of the obser-
vation window (as in the stock sample case),
whereas some will begin during the window (as
in the inflow sample case).

Censoring and truncation of survival time data

Just as with standard cross-sectional data, sur-
vival time data may be considered as censored
or truncated. A survival time is censored if all
that is known is that it began or ended within
some particular interval of time, and thus the
total spell length (from entry time until transi-
tion) is not known exactly. We may distinguish
the following types of censoring:

1. Right censoring: at the time of observa-
tion, the relevant event (transition out of



the current state) had not yet occurred

(the spell end date is unknown), and so

the total length of time between entry to

and exit from the state is unknown. Given

entry at time 0 and observation at time t,

we only know that the completed spell is

of length T > t.

2. Left censoring: the case when the start

date of the spell was not observed, so again

the exact length of the spell (whether com-

pleted or incomplete) is not known. Note

that this is the definition of left censoring

most commonly used by social scientists.

By contrast, truncated survival time data are

those for which there is a systematic exclu-

sion of survival times from one’s sample, and

the sample selection effect depends on survival



time itself. We may distinguish two types of

truncation:

1. Left truncation: the case when only those

who have survived more than some min-

imum amount of time are included in the

observation sample. ‘Small’ survival times—

those below the threshold—are not observed.

Left truncation is also known by other names:

delayed entry and stock sampling with follow-

up. The latter term is the most-commonly

referred to by economists, reflecting the

fact that data they use are often gener-

ated in this way. If one samples from the

stock of persons in the relevant state at

some time s, and interviews them some

time later, then persons with short spells

are systematically excluded. (Of all those

who began a spell at time r < s, only

those with relatively long spells survived



long enough to be found in the stock at

time s and thence available to be sam-

pled). Note that the spell start is assumed

known in this case (cf. left censoring), but

the subject’s survival is only observed from

some later date: hence ‘delayed entry’.

2. Right truncation: this is the case when

only those persons who have experienced

the exit event by some particular date are

included in the sample, and so relatively

‘long’ survival times are systematically ex-

cluded. Right truncation occurs, for ex-

ample, when a sample is drawn from the

persons who exit from the state at a par-

ticular date (e.g. an outflow sample from

the unemployment register).

The most commonly available survival time

data sets contain a combination of survival



times in which either (i) both entry and exit

dates are observed (completed spell data), or

(ii) entry dates are observed and exit dates are

not observed exactly (right censored incom-

plete spell data). The ubiquity of such right

censored data has meant that the term cen-

soring is often used as a shorthand description

to refer to this case.

We assume that the process that gives rise to

censoring of survival times is independent of

the survival time process. There is some la-

tent failure time for person i given by T ∗
i and

some latent censoring time Ci, and what we

observe is Ti = min[Ti, Ci]. If right-censoring is

not independent—if instead its determinants

are correlated with the determinants of the

transition process—then we need to model the

two processes jointly. An example is where

censoring arises through non-random sample

drop-out (‘attrition’).



Continuous versus discrete (or grouped) sur-

vival time data

So far we have implicitly assumed that the

transition event of interest may occur at any

particular instant in time; the stochastic pro-

cess occurs in continuous time. Time is a con-

tinuum and, in principle, the length of an ob-

served spell length can be measured using a

non-negative real number (which may be frac-

tional). Often this is derived from observations

on spell start dates and either spell exit dates

(complete spells) or last observation date (cen-

sored spells). Survival time data do not always

come in this form, however, and for two rea-

sons.

The first reason is that survival times have

been grouped or banded into discrete intervals

of time (e.g. numbers of months or years). In



this case, spell lengths may be summarised us-

ing the set of positive integers (1, 2, 3, 4, and

so on), and the observations on the transition

process are summarized discretely rather than

continuously. That is, although the underly-

ing transition process may occur in continuous

time, the data are not observed (or not pro-

vided) in that form. The occurence of tied

survival times may be an indicator of interval

censoring. Some continuous time models often

(implicitly) assume that transitions can only

occur at different times (at different instants

along the time continuum), and so if there is

a number of individuals in one’s data set with

the same survival time, one might ask whether

the ties are genuine, or simply because survival

times have been grouped at the observation or

reporting stage.

The second reason for discrete time data is

when the underlying transition process is an in-

trinsically discrete one. Consider, for example,



a machine tool set up to carry out a specific cy-

cle of tasks and this cycle takes a fixed amount

of time. When modelling how long it takes for

the machine to break down, it would be natural

to model failure times in terms of the number

of discrete cycles that the machine tool was

in operation. Similarly when modelling fertil-

ity, and in particular the time from puberty to

first birth, it might be more natural to measure

time in terms of numbers of menstrual cycles

rather than number of calendar months.

Thus the more important distinction is be-

tween discrete time data and continuous time

data. Models for the latter are the most com-

monly available and most commonly applied,

perhaps reflecting their origins in the biomed-

ical sciences. However discrete time data are

relatively common in the social sciences. One

should use models that reflect the nature of

the data available.



Types of explanatory variables

There are two main types. Contrast, first, ex-

planatory variables that describe the character-

istics of the observation unit itself (e.g. a per-

son’s age, or a firm’s size), versus the charac-

teristics of the socio-economic environment of

the observation unit (e.g. the unemployment

rate of the area in which the person lives). As

far as model specification is concerned, this

distinction makes no difference. It may make

a significant difference in practice, however,

as the first type of variables are often directly

available in the survey itself, whereas the sec-

ond type often have to be collected separately

and then matched in. The second contrast

is between explanatory variables that are fixed

over time (whether time refers to calendar time

or survival time within the current state, e.g. a

person’s sex) and time-varying, and distinguish

between those that vary with survival time and

those vary with calendar time.



Why are distinctive statistical methods used?

We provide some motivation for the distinc-

tive specialist methods that have been devel-

oped for survival analysis by considering why

some of the methods that are commonly used

elsewhere in economics and other quantitative

social science disciplines cannot be applied in

this context (at least in their standard form).

More specifically, what is the problem with us-

ing either (1) Ordinary Least Squares (OLS)

regressions of survival times, or with using (2)

binary dependent variable models (e.g. logit,

probit) with transition event occurrence as the

dependent variable? Let us consider these in

turn.

OLS cannot handle three aspects of survival

time data very well:

• censoring (and truncation)



• time-varying covariates

• ‘structural’ modelling

To illustrate the (right) censoring issue, let

us suppose that the ‘true’ model is such that

there is a single explanatory variable, Xi for

each individual i = 1, . . . , n who has a true sur-

vival time of T ∗
i . In addition, in the popula-

tion, a higher X is associated with a shorter

survival time. In the sample, we observe Ti

where Ti = T ∗
i for observations with completed

spells, and Ti < T ∗
i for right-censored obser-

vations. Suppose too that the incidence of

censoring is higher at longer survival times rel-

ative to shorter survival times. (This does not

necessarily conflict with the assumption of in-

dependence of the censoring and survival pro-

cesses: it simply reflects the passage of time.

The longer the observation period, the greater



the proportion of spells for which events are

observed.)

If we regress log(Ti) on Xi (noting that survival

times are all non-negative and distributions of

survival times are typically skewed), we fit a

linear relationship. But how should we han-

dle censored cases? We could ignore them al-

together (which might remove many observa-

tions from the sample, but proportionally more

at higher Ti) or we could treat censored obser-

vations as if they were complete (again, under-

reporting the prevalence of large values of Ti).

Neither subsample will recover the appropriate

estimate of the effect of Xi on Ti.

In the presence of time-varying covariates (mul-

tiple values of Xi per individual), how should

we choose which is to be included in an OLS

regression?



The arguments for structural modelling point

out that economic models of job search, mar-

ital search, etc., are framed in terms of de-

cisions about whether to do something (and

observed transitions reflect that choice). That

is, models are not formulated in terms of com-

pleted spell lengths. Perhaps, then, we should

model transitions directly.

Why not use binary dependent variable models

rather than OLS?

Given the above problems, especially the cen-

soring one, one might ask whether one could

use instead a binary dependent regression model

(e.g. logit, probit)? I.e. one could get round

the censoring issue (and the structural mod-

elling issue), by simply modelling whether or

not someone made a transition or not. (Ob-

servations with a transition would have a 1 for

the dependent variable; censored observations



would have a 0.) However, this strategy is also

potentially problematic: it takes no account

of the differences in time in which each per-

son is at risk of experiencing the event. One

could get around this by considering whether

a transition occurred within some pre-specified

interval of time (e.g. 12 months since the spell

began), but that seems rather arbitrary.

In addition, one still loses a large amount of

information, in particular about when someone

left if she or he did so.

Cross-tabulations of (banded) survival times

against some categorical/categorised variable

cannot be used for inference about the rela-

tionship between survival time and that vari-

able, for the same sorts of reasons. (Crosstab-

ulations of a dependent variable against each

explanatory variable are often used with other



sorts of data to explore relationships.) In par-

ticular, the dependent variable is mis-measured

and censoring is not accounted for; and time-

varying explanatory variables cannot be han-

dled easily (current values may be misleading).

The hazard rate

For survival analysis, we need methods that

directly account for the sequential nature of

the data, and are able to handle censoring

and incorporate time-varying covariates. The

solution is to model survival times indirectly,

via the so-called hazard rate, which is a con-

cept related to chances of making a transition

out of the current state at each instant (or

time period) conditional on survival up to that

point.

In continuous time, the length of a spell for

a subject (person, firm, etc.) is a realisation



of a continuous random variable T with a cu-

mulative distribution function (cdf) F (t), and

probability density function (pdf) f(t). F (t)

is also known in the survival analysis literature

as the failure function. The survivor function

is S(t) = 1 − F (t); t is the elapsed time since

entry to the state at time 0.

The failure function

Pr(T ≤ t) = F (t)

implies the survivor function

Pr(T > t) = 1− F (t) = S(t).

The pdf f(t) is the slope of the cdf (failure)

function, ∂F (t)/∂t, or −∂S(t)/∂t. Both the

failure function F (t) and the survivor function

S(t) are probabilities and lie between zero and

one. The survivor function is a monotone de-

creasing function of t, equal to 1 at the start

of the spell and zero at infinity.



The continuous time hazard rate, θ(t), is de-

fined as:

θ(t) =
f(t)

1− F (t)
=

f(t)

S(t)
.

Thus θ(t)∆(t), for tiny t, is akin to the con-

ditional probability of having a spell length of

exactly t, conditional on survival up to time t.

It should be stressed, however, that the hazard

rate is not a probability, as it refers to the ex-

act time t and not the tiny interval thereafter.

The only restriction on the hazard rate is that

θ(t) ≥ 0.

The probability density function f(t) summa-

rizes the concentration of spell lengths (exit

times) at each instant of time along the time

axis. The hazard function summarizes the same

concentration at each point of time, but condi-

tions the expression on survival in the state up

to that instant, and so can be thought of as



summarizing the instantaneous transition in-
tensity. Contrast the unconditional probability
of dying at age 12 (for all persons of a given
birth cohort), and probability of dying at age
12, given survival up to that age.

If time is intrinsically discrete, we define a dis-
crete time hazard rate. For instance, a basket-
ball team must avoid being eliminated in each
round of a tournament in order to make it into
the championship game. In the case in which
survival times are instrinsically discrete, sur-
vival time T is now a discrete random variable
with probabilities

f(j) = fj = Pr(T = j)

where j indexes the set of positive integers, in
terms of ‘cycles’ rather than intervals of equal
length in calendar time. The discrete time sur-
vivor function for cycle j, showing the proba-
bility of survival for j cycles, is given by:

S(j) = Pr(T ≥ j) =
∞∑

k=j

fk



The discrete time hazard at j, h(j) is the con-

ditional probability of the event at j (with con-

ditioning on survival until completion of the cy-

cle immediately before the cycle at which the

event occurs) is:

hj = Pr(T = j|T ≥ j) =
f(j)

S(j − 1)
= Πj

k=1(1−hk)

and the discrete time failure function is just

one minus that last expression.

Choosing a specification for the hazard rate

The empirical analyst with survival time data

to hand has choices to make before analyz-

ing them. First, should the survival times be

treated as observations on a continuous ran-

dom variable, observations on a continuous ran-

dom variable which is grouped (interval censor-

ing), or observations on an intrinsically discrete

random variable? Second, conditional on that



choice, what is the shape of the all-important

relationship between the hazard rate and sur-

vival time?

Intrinsically discrete survival times are rare in

the social sciences. The vast majority of the

behavioural processes that social scientists study

occur in continuous time, but it is common

for the data summarizing spell lengths to be

recorded in grouped form. Indeed virtually all

data are grouped (even with survival times recorded

in units as small as days or hours). A key is-

sue, then, is the length of the intervals used

for grouping relative to the typical spell length:

the smaller the ratio of the former to the latter,

the more appropriate it is to use a continuous

time specification.

If one has information about the day, month,

and year in which a spell began, and also the

day, month, and year at which subjects were



last observed—so survival times are measured
in days—and the typical spell length is several
months or years, then it is reasonable to treat
survival times as observations on a continuous
random variable (not grouped). But if spells’
length are typically only a few days long, then
recording them in units of days implies sub-
stantial grouping. It would then make sense
to use a specification that accounted for the
interval censoring. A related issue concerns
‘tied’ survival times: more than one individual
in the data set with the same recorded sur-
vival time. A relatively high prevalence of ties
may indicate that the banding of survival times
should be taken into account when choosing
the specification.

Historically, many of the methods developed
for analysis of survival time data assumed that
the data set contained observations on a con-
tinuous random variable (and arose in applica-
tions where this assumption was reasonable).



Application of these methods to social science

data, often interval-censored, was not neces-

sarily appropriate. Today, this is much less of

a problem.

To what extent can which economic theory

provides suggestions for what the shape of the

hazard rate function is like? Consider a two-

state labour market, where the two states are

(1) employment and (2) unemployment. Hence

the only way to leave unemployment is by be-

coming employed. To leave unemployment re-

quires that an unemployed person both receives

a job offer, and that that offer is acceptable.

(The job offer probability is conventionally con-

sidered to be under the choice of firms, and

the acceptance probability dependent on the

choice of workers.) For a given worker, we

may write the unemployment exit hazard rate

θ(t) as the product of the job offer hazard ξ(t)

and the job acceptance hazard A(t).



Using a structural approach, in a simple job
search framework, the unemployed person searches
across the distribution of wage offers, and the
optional policy is to adopt a reservation wage
r, and accept a job offer with associated wage
w only if w ≥ r. Hence,

θ(t) = ξ(t)[1−W (t)]

where W (t) is the cdf of the wage offer distri-
bution facing the worker. How the re-employment
‘hazard’ varies with duration thus depends on:

1. How the reservation wage varies with dura-
tion of unemployment. In an infinite hori-
zon world one would expect r to be con-
stant; in a finite horizon world, one would
expect r to decline with the duration of
unemployment.

2. How the job offer hazard ξ varies with dura-
tion of unemployment. (It is unclear what
to expect.)



Using a reduced form approach which places
fewer restrictions on the hazard function, we
can write the hazard function more generally
as

θ(t) = θ(X(t, s), t),

where X is a vector of personal characteristics
that may vary with unemployment duration (t)
or with calendar time (s). That is we allow, in
a more ad hoc way, for the fact that:

1. unemployment benefits may vary with du-
ration t; and maybe also calendar time s

(because of policy changes, for example);
and

2. local labour market conditions may vary
with calendar time (s); and

3. θ may also vary directly with survival time,
t.



Examples of this include

• Employers screening unemployed applicants
on the basis of how long each applicant
has been unemployed, for example reject-
ing the longer-term unemployed) : ∂ξ/∂t <

0.

• The reservation wage falling with unem-
ployment duration: ∂A/∂t > 0.

• Discouragement (or a ‘welfare culture’ or
‘benefit dependence’ effect) may set in as
the unemployment spell lengthens, leading
to decline in search intensity: ∂ξ/∂t < 0.

• Time limits on eligibility for Unemployment
Insurance (UI) may lead to a benefit ex-
haustion effect, with the re-employment
hazard (θ) rising as the time limit approaches.



Some of the influences mentioned would imply

that the hazard rises with unemployment dura-

tion, whereas others imply that the hazard de-

clines with duration. The actual shape of the

hazard will reflect a mixture of these effects.

This suggests that it is important not to pre-

impose particular shape on the hazard func-

tion. Although the examples above referred

to modelling of unemployment duration, much

the same issues for model selection are likely

to arise in other contexts.

The proportional hazards model

We consider the hazard rate to vary over indi-

viduals, assuming that their characteristics are

captured in a vector of variables X, fixed over

time, with a linear combination of those vari-

ables β′X summarizing the individual effect on



hazard, now expressed as θ(t, X). The propor-

tional hazards (PH) model satisfies a separa-

bility assumption:

θ(t, X) = θ0(t) exp(β′X) = θ0(t)λ

where θ0(t), the baseline hazard function, de-

pends on t but not X. It summarizes the

pattern of ‘duration dependence’, assumed to

be common to all persons. The parameter

λ = exp(β′X) is a person-specific non-negative

function of covariates which scales the base-

line hazard function. The property of PH im-

plies that absolute differences in X imply pro-

portionate differences in the hazard at each t.

With the assumption that the covariates are

fixed (not time-varying), this gives rise to the

log relative hazard model

log

[
θ(t, Xi)

θ(t, Xj)

]
= β′(Xi −Xj).

If two individuals only differ on one charac-

teristic, and that characteristic is an indicator



variable (the presence or absence of some fea-

ture), then the hazard ratio is

θ(t, Xi)

θ(t, Xj)
= exp(βk)

which gives the proportionate change in hazard

related to the change in that characteristic,

ceteris paribus. Alternatively, we can write

βk = ∂ log θ(t, X)/∂Xk

so that the regression coefficient summarizes

the proportional effect on the hazard of ab-

solute changes in the corresponding covariate.

This effect does not vary with survival time.

However, the PH model can be extended to

deal with time-varying covariates.

Cox’s proportional hazards model

This model, proposed by Cox (1972), is per-

haps the most-often cited article in survival



analysis. The distinguishing feature of Cox’s

proportional hazard model, sometimes simply

referred to as the ‘Cox model’, is its demon-

stration that one could estimate the relation-

ship between the hazard rate and explanatory

variables without having to make any assump-

tions about the shape of the baseline hazard

function. Hence the Cox model is sometimes

referred to as a semi-parametric model. The

model may be estimated in Stata using the

command stcox. The handout presents sev-

eral estimates employing the Cox PH model.

Parametric specifications

Although the Cox PH model avoids the need

to explicitly model the baseline hazard func-

tion, you may be interested in that function.

A parametric approach must then be followed

in which some specific statistical distribution is

chosen to represent the behavior of the hazard



function. These distributions include the expo-

nential, Weilbull, log-logistic, lognormal, Gom-

pertz and generalized Gamma distributions.

Parametric survival-time models may be es-

timated in Stata using the command streg

with one of the distribution() options. The

handout presents an example of estimating a

survival model employing the parametric ap-

proach.


