
EC771: Econometrics, Spring 2009

Greene, Econometric Analysis (6th ed, 2008)

Chapter 17:

Simulation Based Estimation and Inference

We often want to evaluate the properties of es-

timators, or compare a proposed estimator to

another, in a context where analytical deriva-

tion of those properties is not feasible. In that

case, econometricians resort to Monte Carlo

studies: simulation methods making use of

(pseudo-)random draws from an error distri-

bution and multiple replications over a set of

known parameters. This methodology is par-

ticularly relevant in situations where the only

analytical findings involve asymptotic, large–

sample results. Applied researchers need to

understand how a particular estimation strat-

egy will perform in small samples: for instance,

when working with macro data on the national

aggregates, we have no more than 150–200

quarterly observations available for many se-

ries. Where only annual data are available, the

problem becomes even more striking. In that

case, we require an understanding of the per-

formance of estimation techniques, test statis-

tics, etc. in a very small sample. Monte Carlo

studies, although they do not generalize to

cases beyond those performed in the experi-

ment, may be useful in these situations. They

also are useful in modelling quantities for which

no analytical results have yet been derived: for

instance, the critical values for many unit-root

test statistics have been derived by simulation

experiments, in the absence of closed-form ex-

pressions for the sampling distributions of the

statistics.

Most econometric software provide some facil-

ities for Monte Carlo experiments. Although

one can write the code to generate an ex-

periment in any programming language, it is

most useful to do so in a context where one

may readily save the results of each replica-

tion for further analysis. The quality of the

pseudo-random number generators available is

also an important concern. Recent studies

published in the Journal of Applied Economet-

rics have compared many software packages’

performance on a standard set of benchmarks

for randomness. Although most packages meet

these criteria, all but the most recent versions

of GAUSS fail miserably—casting considerable

doubt on those many published studies mak-

ing use of GAUSS software. State-of-the-art

pseudo-random number generators do exist,

and you should use a package that implements

them. You will also want a package with a

full set of statistical functions, permitting ran-

dom draws to be readily made from a specified

distribution-not merely normal or t, but from a

number of additional distributions, depending

upon the experiment.

Stata version 10.1 provides a useful environ-

ment for Monte Carlo simulations. Setting up

a simulation requires that you write a Stata

program: not merely a “do-file” containing a

set of Stata commands, but a sequence of

commands beginning with the program define

statement. This program sets up the simu-

lation experiment and specifies what is to be

done in one replication; you then invoke it with

the simulate prefix to execute a specified num-

ber of replications. Cameron and Trivedi, Mi-

croeconomics Using Stata, 2009

We first consider a very simple program in

which we demonstrate the central limit their

result that sample mean is approximately nor-

mally distributed as N → ∞. We consider a

random variable that has the uniform distribu-

tion and a sample size of 30. The simulate

command runs a specified command a num-

ber of times, where the command will often

be a user-written program. A number of ex-

pressions are returned by the command, and

saved in a new Stata dataset by simulate. As

an example:

// Program to draw sample of size 30 from uniform

// and return sample mean

program onesample, rclass

drop _all

quietly set obs 30

generate x = runiform()

summarize x

return scalar meanforonesample = r(mean)

end

We can run the program with simulate, return-

ing the one result as xbar:

// Run program onesample 10,000 times

// to get 10,000 sample means

simulate xbar = r(meanforonesample), ///

seed(10101) reps(10000) nodots: onesample

The set seed ensures that the same sequence

of pseudo-random numbers will be used ev-

ery time the simulation is run. This is useful

when debugging the program to ensure that

it is coded properly. The results of simulate

can then be summarized and/or graphed (see

771mcsim1.html).

0
2

4
6

8
De

ns
ity

.3 .4 .5 .6 .7
xbar from many samples

As a more interesting example of Monte Carlo

simulation, let us consider simulation meth-

ods to investigate the finite-sample properties

of the OLS estimator with random regressors

and skewed errors. If errors are i.i.d., skewness

will have no effect on the large-sample prop-

erties of the OLS estimator. But with skewed

errors, we will need a larger sample size for

the asymptotic distribution to approximate the

finite-sample distribution of the OLS estimator

than when errors are normal.

We consider the DGP

y = β1 + β2x + u, u ∼ χ2(1)− 1, x ∼ χ2(1)

where β1 = 1, β2 = 2, N = 150. The er-

ror is independent of x, ensuring consistency

of OLS, with a mean of zero, variance of 2,

skewness of
√

8 and kurtosis of 15, compared

to the Normal error, with a skewness of 0 and

kurtosis of 3.

For each simulation, we obtain parameter es-

timates, standard errors, t-values for the test

that β2 = 2 and the outcome of a two-tailed

test of that hypothesis at the 0.05 level.

We store the sample size and the number of

simulations in global macros, as we often may

want to change them.

Our simulation program becomes

* Program for finite-sample properties of OLS

program chi2data, rclass

version 10.1

drop _all

set obs $numobs

generate double x = rchi2(1)

// demeaned chi^2 error

generate y = 1 + 2*x + rchi2(1)-1

regress y x

return scalar b2 =_b[x]

return scalar se2 = _se[x]

return scalar t2 = (_b[x]-2)/_se[x]

return scalar r2 = abs(return(t2))> ///

invttail($numobs-2,.025)

return scalar p2 = 2*ttail($numobs-2, ///

abs(return(t2)))

end

We can now run this program with simulate,

producing a dataset containing the five scalars

listed above for each simulation (see 771mcsim2.html).

set seed 10101

* Simulation for finite-sample properties of OLS

simulate b2f=r(b2) se2f=r(se2) t2f=r(t2) ///

reject2f=r(r2) p2f=r(p2), ///

reps($numsims) ///

saving(chi2datares, replace) ///

nolegend nodots: chi2data

We can conclude that our estimator of β2 is un-

biased, as the quite narrow 95% confidence in-

terval from 1000 simulations contains the true

value of 2.0. We can consider how closely the

distribution of t-statistics from the program

approximate the asymptotic distribution of a

t148:

0
.1

.2
.3

.4

-4 -2 0 2 4
r(t2)

density: r(t2) t2_d2

To evaluate the size of the test (the probabil-

ity of rejecting a true null hypothesis), we can

examine the rejection rate, r2 above. The es-

timated rejection rate from 1000 simulations

is 0.046, with a 95% confidence interval of

(0.033, 0.059): wide, but containing 0.05. With

10,000 replications, the estimated rejection rate

is 0.049 with a confidence interval of (0.044,

0.052). The last item computed is the p-value

of the test. If the t-distribution is the correct

distribution, then p2 should be uniformly dis-

tributed on (0,1).

0
.5

1
1.
5

De
ns

ity

0 .2 .4 .6 .8 1
r(p2)

We can also evaluate the power of the test: its

ability to reject a false null hypothesis. We es-

timate the rejection rate for the test against a

false null hypothesis. The larger the difference

between the tested value and the true value,

the greater the power and the rejection rate.

This modified version of the chi2data program

estimates the power of a test against the false

null hypothesis β2 = 2.1.

* Finite-sample properties of OLS: power

program chi2datab, rclass

version 10.1

drop _all

set obs $numobs

generate double x = rchi2(1)

// demeaned chi^2 error

generate y = 1 + 2*x + rchi2(1)-1

regress y x

return scalar b2 =_b[x]

return scalar se2 =_se[x]

test x=2.1

return scalar r2 = (r(p)<.05)

end

In this case, the power is not high, with a mean

of 0.241. Using a larger sample size or increas-

ing the distance between the true and false val-

ues would increase the power of the test (see

771mcsim2.html).

Simulating a spurious regression

We can demonstrate Granger’s concept of a

spurious regression with a simulation. We cre-

ate two independent random walks, regress one

on the other, and record the coefficient, stan-

dard error, t-ratio and its tail probability in the

returns from the program:

* spurious regression: independent random walks

prog irwd, rclass

version 10.1

drop _all

set obs $N

local drift 2

g double x = 0 in 1

g double y = 0 in 1

replace x = x[_n - 1] + $trcoef * ‘drift’ ///

+ rnormal() in 2/l

replace y = y[_n - 1] + $trcoef * ‘drift’ ///

+ rnormal() in 2/l

reg y x

return scalar b = _b[x]

return scalar se = _se[x]

return scalar t = _b[x]/_se[x]

return scalar r2 = ///

abs(return(t)) > invttail($N - 2, 0.025)

end

We use a global, trcoef, to allow the pro-

gram to be used for both pure random walks

and random walks with drift. The handout

771irwd.html illustrates that for pure random

walks with N = 100, the true null hypothe-

sis that ∂y/∂x = 0 is rejected in over 75% of

10,000 simulations. For random walks with

drift, the null is rejected in every simulation.

Bootstrapping

A closely related topic to Monte Carlo simu-

lation is that of the technique of bootstrap-

ping, developed by Efron (1979). A key dif-

ference: whereas Monte Carlo simulation is

designed to utilize purely random draws from

a specified distribution (which with sufficient

sample size will follow that theoretical distri-

bution) bootstrapping is used to obtain a de-

scription of the sampling properties of empiri-

cal estimators, using the empirical distribution

of sample data. If we derive an estimate θobs

from a sample X = (x1, x2, ..., xN) , we can de-

rive a bootstrap estimate of its precision by

generating a sequence of bootstrap estimators(
θ̂1, θ̂2, ..., θ̂B

)
, with each estimator generated

from an m−observation sample from X, with

replacement. The size of the bootstrap sample

m may be larger, smaller or equal to N. The

estimated asymptotic variance of θ may then

be computed from this sequence of bootstrap

estimates and the original estimator, θobs (for

observed):

Est.Asy.V ar[θ] = B−1
B∑

b=1

[
θ̂b − θobs

] [
θ̂b − θobs

]′
where the formula has been written to allow θ̂

to be a vector of estimated parameters. The

square roots of this variance-covariance matrix

are known as the bootstrap standard errors

of θ̂. They will often prove useful when doubt

exists regarding the appropriateness of the con-

ventional estimates of the precision matrix, as

well as in cases where no analytical expression

for that matrix is available, e.g., in the con-

text of a highly nonlinear estimator for which

the numerical Hessian may not be computed.

After bootstrapping, we have the mean of the

estimated statistic—e.g. θ̂—which may be com-

pared with the point estimate of the statistic

computed from the original sample, θobs (for
observed). The difference θ̂−θobs is an estimate
of the bias of the statistic; in the presence of
a biased point estimate, this bias may be non-
trivial. However we cannot use that difference
to construct an unbiased estimate, since the
bootstrap estimate contains an indeterminate
amount of random error.

Why do we bootstrap quantities for which asymp-
totic measures of precision exist? All measures
of precision come from the statistic’s sampling
distribution, which is in turn determined by the
distribution of the population and the formula
used to estimate the statistic from a sample of
size N . In some cases, analytical estimates of
the sampling distribution are difficult or infea-
sible to compute, such as those relating to the
means from non-normal populations. Boot-
strapping estimates of precision rely on the no-
tion that the observed distribution in the sam-
ple is a good approximation to the population
distribution.

The bootstrap command specifies a single es-

timation command, the results to be retained

from that command, and the number of boot-

strap samples (B) to be drawn. You may op-

tionally specify the size of the bootstrap sam-

ples (m); if you do not, it defaults to N (the

currently defined sample size). This is very

useful, since it makes estimating bootstrap stan-

dard errors no more difficult than performing

the estimation itself. If you are trying to con-

struct a bootstrap distribution for a set of statis-

tics which are forthcoming from a single Stata

command, this may be done without further

programming.

In the output from the bootstrap command

(technically, in the output from the bstat com-

mand, which is automatically invoked by bootstrap)

the bias is presented as the difference above.

The first confidence interval (labelled (N)) is

based on the assumption of approximate nor-

mality of the sampling (and bootstrap) dis-

tribution, and will be reasonable if that as-

sumption is so. The percentile (P) and bias-

corrected (BC) bootstrap confidence intervals

are computed without making the assumption

of approximate normality, and demonstrate the

sensitivity of the bootstrap estimates to that

feature of the empirical distribution (for in-

stance, those confidence intervals need not be

symmetric around θobs). Note on the graph

that for the estimates of the mean, the boot-

strap distribution diverges to some degree from

normality, with considerably more mass in the

center of the distribution.

The bootstrap command is not limited to gen-

erating bootstrap estimates from a single Stata

command. To compute a bootstrap distri-

bution for more complicated quantities, you

must write a Stata program (just as with the

simulate command) that specifies the estima-

tion to be performed in the bootstrap sample.

One may then execute bootstrap, specifying

the name of your program, and the number of

bootstrap samples to be drawn. For instance,

if we wanted to generate a bootstrap estimate

of the ratio of two means, we could not do so

with a single Stata command. We could do so

by writing a program that returned that ratio:

capture program drop muratio

program define muratio, rclass

version 10.1

syntax varlist(min=2 max=2)

tempname ymu

summarize ‘1’, meanonly

scalar ‘ymu’ = r(mean)

summarize ‘2’, meanonly

return scalar ratio = ‘ymu’/r(mean)

end

We can now execute this program to compute

the ratio of the average price of a domestic

car vs. the average price of a foreign car, and

generate a bootstrap confidence interval for

the ratio (see 771bstrap1.html).

set seed 10101

local reps 1000

bootstrap r(ratio), reps(‘reps’) ///

saving(771bs2_9,replace): ///

muratio p_dom p_for

0
1

2
3

4
De

ns
ity

.6 .8 1 1.2 1.4
r(ratio)

Bootstrap distribution of ratio of means

Note in the histogram that the empirical distri-

bution is quite visibly skewed; this corresponds

to the percentile and bias-corrected confidence

intervals being wider than that derived from

the assumption of approximate normality.

Combining simulation and bootstrapping

These commands are very flexible; one may

combine both techniques in a single Stata pro-

gram. The example in Stata’s Reference Man-

ual [S-Z] article on simulate illustrates an ap-

plication where a random sample is generated,

and bootstrap is used to generate a dataset

of medians calculated by bootstrap sampling

from the random sample. This procedure is

called within a simulate program which cal-

culates the standard deviation of these boot-

strap standard errors, repeated over a number

of Monte Carlo draws. The simulate program

thus generates a point and interval estimate

of the median of these simulated data, where

the precision of the median estimates is derived

from a bootstrapped standard error.

