

12.4 Estimating means and variances using the ml command

The problem: a Statalist user posed a question about the estimation of means and variances from subsamples of a normally distributed variable. He wanted to compute two nonlinear combinations of those estimates:

$$\beta = \frac{\sigma_1 - \sigma_2}{\sigma_1 + \sigma_2} \tag{12.1}$$

and

$$\alpha = 2\pi\sqrt{3} \left(\frac{\mu_1 - \mu_2}{\sigma_1 + \sigma_2} \right) \tag{12.2}$$

The user would also like to estimate the quantity α given the assumption of a common variance, $\sigma = \sigma_1 = \sigma_2$.

This may readily be accomplished by ml as long as the user is willing to make a distributional assumption. We set up a variant of mynormal_lf.ado⁴ that allows for separate means and variances, depending on the value of an indicator variable, which we access with global macro subsample:

We now may set up the estimation problem. As we do not have the user's data, we use auto.dta and consider foreign as the binary indicator:

```
sysuse auto, clear
(1978 Automobile Data)
. global subsample foreign
. generate byte iota = 1
. ml model lf meanvar (mu1: price = iota) (mu2: price = iota) /sigma1 /sigma2
note: iota dropped because of collinearity
note: iota dropped because of collinearity
. ml maximize, nolog
               log likelihood =
initial:
                                    -<inf>
                                            (could not be evaluated)
feasible:
               log likelihood = -879.18213
               log\ likelihood = -705.93677
rescale:
               log likelihood = -701.24251
rescale eq:
                                                   Number of obs
                                                                             74
                                                   Wald chi2(0)
Log likelihood = -695.14898
                                                   Prob > chi2
```

4. See Section 11.13.

Chapter 12 Cookbook: Ado-file programming

٠,	h	ı
\sim	.,	ι

		Coef.	Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
mu1		6072.423	425.3414	14.28	0.000	5238.769	6006 077
	_cons	6072.423	425.3414	14.20	0.000	5236.769	6906.077
mu2							
	_cons	6384.682	546.1422	11.69	0.000	5314.263	7455.101
sigma1							
	_cons	3067.18	300.7618	10.20	0.000	2477.698	3656.662
sigma2	2						
	_cons	2561.634	386.1808	6.63	0.000	1804.733	3318.534

[.] estimates store unconstr

For use below, we use $\tt estimates$ $\tt store$ ([R] $\tt estimates$) to save the results of estimation under the name $\tt unconstr.$

We can verify that these maximum likelihood estimates of the subsample means and variances are correct by estimating the subsamples with ivreg2 (Baum et al. (2007)), available from the SSC Archive:

. ivreg2 price if !foreign . ivreg2 price if foreign

Estimates of the desired quantities may be readily computed, in point and interval form, with nlcom ([R] nlcom):

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.089814	.089195	1.01	0.314	0850049	.2646329

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	6037236	1.339398	-0.45	0.652	-3.228896	2.021449

