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156 Chapter 6. Regression with non-i.i.d. errors

This same situation may arise, as noted above, in the context of other individual-level
series. Earnings may be more variable for self-employed workers, or those who depend
on commissions or tips than salaried workers. In the context of firm data, we might
expect that profits (or revenues, or capital investment) might be much more variable in
some industries than others. Capital-goods makers face a much more cyclical demand
for their product than do, for example, electric utilities.

Testing for heteroskedasticity between groups of observations

How might we test for groupwise heteroskedasticity? By the assumption that each
group’s regression equation satisfies the classical assumptions (including that of ho-
moskedasticity), the s2 computed by [R] regress is a consistent estimate of the group-
specific variance of the disturbance process. For two groups, an F -test may be con-
structed, with the larger variance in the numerator; the degrees of freedom are the
residual degrees of freedom of each group’s regression. This can easily be accomplished
if both groups’ residuals are stored in a single variable, with a group variable indicating
group membership (in this case 1 or 2). The third form of [R] sdtest may then be
employed, using the by(groupvar) option, to conduct the F -test.

What if there are more than two groups across which we wish to test for equality
of disturbance variance: for instance, a set of ten industries? We may then employ
the robvar command ([R] sdtest), which like sdtest expects to find a single variable
containing each group’s residuals, with a group membership variable identifying them.
The by(groupvar) option is employed here as well. The test conducted is that of Levene
(1960), labeled as W0, which is robust to non-normality of the error distribution. Two
variants of the test proposed by Brown and Forsythe (1992) which employs more robust
estimators of central tendency (e.g., median rather than mean), W50 and W10, are also
computed.

We illustrate groupwise heteroskedasticity with state-level data from the NEdata
dataset. These data are comprised of one observation per year for each of the six U.S.
states in the New England region for 1981–2000. Descriptive statistics are generated by
[R] summarize for dpipc, state disposable personal income per capita.

. use NEdata, clear

. summarize dpipc

Variable Obs Mean Std. Dev. Min Max

dpipc 120 18.15802 5.662848 8.153382 33.38758

We fit a linear trend model to dpipc by regressing that variable on year. The residuals
are tested for equality of variances across states with robvar.

. regress dpipc year

Source SS df MS Number of obs = 120
F( 1, 118) = 440.17

Model 3009.33617 1 3009.33617 Prob > F = 0.0000
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Residual 806.737449 118 6.83675804 R-squared = 0.7886
Adj R-squared = 0.7868

Total 3816.07362 119 32.0678456 Root MSE = 2.6147

dpipc Coef. Std. Err. t P>|t| [95% Conf. Interval]

year .8684582 .0413941 20.98 0.000 .7864865 .9504298
_cons -1710.508 82.39534 -20.76 0.000 -1873.673 -1547.343

. predict double eps, residual

. robvar eps, by(state)

Summary of Residuals
state Mean Std. Dev. Freq.

CT 4.167853 1.3596266 20
MA 1.618796 .86550138 20
ME -2.9841056 .93797625 20
NH .51033312 .61139299 20
RI -.8927223 .63408722 20
VT -2.4201543 .71470977 20

Total -6.063e-14 2.6037101 120

W0 = 4.3882072 df(5, 114) Pr > F = .00108562

W50 = 3.2989849 df(5, 114) Pr > F = .00806752

W10 = 4.2536245 df(5, 114) Pr > F = .00139064

The hypothesis of equality of variances is soundly rejected by all three robvar test
statistics, with the residuals for Connecticut, Massachusetts and Maine possessing a
standard deviation considerably larger than those of the other three states.

Estimation with FGLS

If we discern that different groups of observations have different error variances, we
may apply the generalized least squares estimator using analytical weights, as described
above in Section 6.2.1. In the groupwise context, we define the analytical weight (aw)
series as a constant value for each observation in a group. That value is calculated as the
estimated variance of that group’s OLS residuals. Using the residual series calculated
above, we construct an estimate of its variance for each New England state with [R] egen
and generate the analytical weight series:

. bysort state: egen sd_eps = sd(eps)

. generate double gw_wt = 1/sd_eps^2

. tabstat sd_eps gw_wt, by(state)

Summary statistics: mean
by categories of: state

state sd_eps gw_wt

CT 1.359627 .5409545
MA .8655014 1.334948
ME .9379762 1.136623
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NH .611393 2.675218
RI .6340872 2.48715
VT .7147098 1.957675

Total .8538824 1.688761

The [R] tabstat command reveals that the standard deviations of New Hampshire and
Rhode Island’s residuals are much more sizable than those of the other four states. We
now reestimate the regression using FGLS employing the analytical weight series:

. regress dpipc year [aw=gw_wt]
(sum of wgt is 2.0265e+02)

Source SS df MS Number of obs = 120
F( 1, 118) = 698.19

Model 2845.55409 1 2845.55409 Prob > F = 0.0000
Residual 480.921278 118 4.07560405 R-squared = 0.8554

Adj R-squared = 0.8542
Total 3326.47537 119 27.9535745 Root MSE = 2.0188

dpipc Coef. Std. Err. t P>|t| [95% Conf. Interval]

year .8444948 .0319602 26.42 0.000 .7812049 .9077847
_cons -1663.26 63.61705 -26.14 0.000 -1789.239 -1537.281

In comparison to the unweighted estimates’ Root MSE of 2.6147, FGLS yields a consid-
erably smaller value of 2.0188.

6.2.3 Heteroskedasticity in grouped data

We spoke in Section 6.2 above of a third case in which heteroskedasticity arises in cross-
sectional data: where our observations are grouped or aggregated data, representing
differing numbers of microdata records. This situation arises when the variables in
our dataset are averages or standard deviations of groups’ observations: for instance,
a set of 50 U.S. state observations. Since we know the population of each state, we
know precisely how much more accurate California’s observation (based on 30+ million
individuals) is than Vermont’s (based on fewer than a million). This situation would also
arise in the context of observations representing average attainment scores for individual
schools or school districts, where we know that each school (or school district) has a
different-sized student population. In these cases we know that heteroskedasticity will
occur in the grouped or aggregated data, and are in the unique case of knowing Ω, since
it depends only on the Ng underlying each observation.

You could consider this a problem of non-random sampling. In the first example
above, when 30 million California records are replaced by one state record, an individual
has very little weight in the average. In a smaller state, each individual would have a
greater weight in her state’s average values. If we want to conduct inference in terms of
a national random sample, we must equalize those weights, leading to a heavier weight


