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Appendix D:

Summary of matrix algebra

Basic definitions

A matrix is a rectangular array of numbers,

with m rows and n columns, which are the row

dimension and column dimension, respectively.

The matrix A will have typical element aij.

A vector is a matrix with one row and/or one

column. Thus a scalar can be considered a

1 × 1 matrix. A m-element row vector has

one row and m columns. A n-element column

vector has n rows and one column.



A square matrix has m = n. A diagonal ma-

trix is a square matrix with off-diagonal ele-
ments equal to 0. It may have m distinct diag-
onal elements. If those m elements are equal,
it is a scalar matrix. If they all equal 1, it
is an identity matrix of order m, customarily
written as I or Im.

A symmetric matrix is a square matrix for
which aij = aji ∀i, j. The elements above and
below its main diagonal are equal. It is often
written in upper triangular or lower triangular
form, since there is no need to report more
than the main diagonal and sub- (super-) di-
agonal elements.

A symmetric matrix we often compute in econo-
metrics is the correlation matrix of a set of vari-
ables. The correlation matrix will have 1s on
its main diagonal (since every variable is per-
fectly correlated with itself) and off-diagonal
values between (-1,+1).



Another very important matrix is what Stata

calls the VCE, or estimated variance-covariance

matrix of the estimated parameters of a regres-

sion equation. It is by construction a symmet-

ric matrix with positive elements on the main

diagonal (the estimated variances of the pa-

rameters b, whose positive square roots are the

reported standard errors of those parameters).

The off-diagonal elements are the estimated

covariances of the estimated parameters, used

in computing hypothesis tests or confidence

intervals involving more than one parameter.

This matrix may be examined after a regress

command in Stata with the command estat

vce.

The transpose of a matrix reflects the matrix

around its main diagonal. We write the trans-

pose of A as A’ (or, less commonly, AT ). If

B = A’, then bij = aji ∀i, j. If A is m × n, B

is of order n×m. The rows of A become the

columns of A, and vice versa.



Several relations involving the transpose of a

matrix:

(1) the transpose of a row vector is a column

vector;

(2) the transpose of a transpose is the matrix

itself;

(3) the transpose of a symmetric matrix is the

matrix itself;

(4) The transpose of the sum (difference) is

the sum (difference) of the transposes.

A matrix of any row and column dimension

with all elements equal to zero is a zero ma-

trix or null matrix. It plays the role in ma-

trix algebra (or linear algebra) that the scalar

0 plays in ordinary algebra, in the sense that

adding or subtracting a null matrix has no ef-

fect, and multiplying by a null matrix returns

a null matrix.

The identity matrix I plays the role of the num-

ber 1 in ordinary algebra: e.g., multiplying by I



has no effect, and we can always insert an I of
appropriate order in a matrix product without
changing the product.

Matrix operations

In matrix algebra, algebraic operations are only
defined for matrices or vectors of appropriate
order. Since vectors are special cases of ma-
trices, we will only speak of matrices. Two
matrices A and B are equal if they have the
same order—the same number of rows and
columns—and if aij = bij ∀i, j. Addition or
subtraction can be performed if and only if
the matrices are of the same order. The sum
(difference) C = A ± B is defined as cij =
aij ± bij ∀i, j. That is, just as we compare ma-
trices for equality element-by-element, we add
(subtract) matrices element-by-element.

Scalar multiplication is defined for any matrix
as C = k A, and involves multiplying each
element by that scalar: cij = k × aij ∀i, j.



Matrix multiplication is defined for matrices

Am×n and Bn×q as Cm×q = A B. This prod-

uct is defined since the number of columns in

the first matrix equals the number of rows in

the second matrix. To define matrix multipli-

cation, we must first define the dot product

of vectors un×1 and vn×1. The product d = u′v
is a scalar, defined as d =

∑n
i=1 uivi. This im-

plies that if u = v, the scalar d will be the sum

of squares of the elements of u. We may also

compute the outer product of these vectors,

u v’, which for vectors of the same length will

create a n× n matrix.

In matrix multiplication, each element of the

result matrix is defined as a dot product. If C

= A B, cij is the dot product of the ith row of

A and the jth column of B: cij =
∑n
k=1AikBkj.

These dot products are only defined for vec-

tors of the same length, which gives rise to

the constraint on the number of columns of A



and the number of rows of B. When this con-

straint is satisfied, the vectors are conformable

for multiplication.

In ordinary algebra, multiplication is commuta-

tive: we can write x y or y x and receive the

same result. In matrix algebra, the product of

arbitrary matrices will not exist unless they are

conformable. if one of those products exists,

the other will not except in special cases. If

A and B are square matrices of the same or-

der, then both A B and B A always exist, but

they do not yield the same result matrix ex-

cept under special circumstances. (A natural

exception: we can always write I A and A I,

both of which equal A. Likewise for the null

matrix.)

We can also multiply a matrix by a vector. If

we write C = u A, we are multiplying the

m-element row vector u by matrix A, which



must have m rows; it may have any number of

columns. We are premultiplying A by u. We

may also postmultiply A by vector v. If A is

m× n, v must be a n-element column vector.

Some properties of matrix multiplication:

(1) multiplication is associative with respect

to scalars and matrices, as long as they are

conformable:

k(A + B) = kA + kB,

C ( A + B) = C A + C B,

( A + B) C = A C + B C.

(2) The transpose of a product is the product

of the transposes, in reverse order:

(A B)’ = B’ A’.

(3) For any matrix X the products X’X

and X X’ exist, and are symmetric.

We cannot speak of dividing one matrix by an-

other (unless they are both scalars, and the

rules of ordinary algebra apply). Instead, we



define the concept of the inverse matrix. A
square matrix Am×m may possess a unique in-
verse, written A−1, under certain conditions.
If it exists, the inverse is defined as that ma-
trix which satisfies A A−1 = A−1 A = Im, and
in that sense the inverse operates like the divi-
sion operator in normal algebra, where x× 1

x =
1 ∀x 6= 0. A matrix which possesses an in-
verse is said to be nonsingular, or invertible,
and it has a nonzero determinant. A singular
matrix possesses a zero determinant. We will
not go into the computation of inverse matri-
ces or determinants—which is better left to a
computer—but we must understand their im-
portance to econometrics and the linear regres-
sion model in particular.

Properties of inverses:
(1) The inverse of a product is the product
of the inverses, in reverse order: (A B)−1 =

B−1 A−1. The transpose of the inverse is the
inverse of the transpose: (A’)−1 = (A−1)

′
.



The trace of a square matrix, denoted tr(A),

is the scalar sum of its diagonal elements. So,

for instance, the trace of the identity matrix

In is n. The trace of the sum (difference) of

matrices is the sum (difference) of the traces,

and the trace of a product yielding a square

matrix is not dependent on order: that is, if

Am×n and Bn×m, both the products AB and

BA exist, and have the same trace.

Linear independence and rank

The notion of a matrix possessing an inverse is

related to the concept of linear independence.

A set of n-vectors [x1, x2, . . . , xr] is said to be

linearly independent if and only if α′ x = 0 im-

plies that α is the null vector. If α′ x = 0 holds

for a set of scalars α1, α2, . . . , αr that are not all

zero, then the set of x-vectors are linearly de-

pendent. This implies that at least one vector



in this set can be written as a linear combina-

tion of the others. In econometric terms, this

is the problem of perfect collinearity: one or

more of the regressors can be expressed as an

exact linear combination of the others.

If A is a n× k matrix, the column rank of A is

the maximum number of linearly independent

columns of A. If rank(A) = k, A has full col-

umn rank. Row rank is defined similarly. The

rank of a matrix is the minimum of its row and

column ranks. When we consider a data ma-

trix Xn×k, with n > k, its rank cannot exceed

k. If a square matrix A of order k is of full

rank (rank=k), then A−1 exists: the matrix is

invertible. The rank of a product of matrices

cannot exceed either of their ranks, and may

be zero.

Quadratic forms and positive definite matrices



If A is a n × n symmetric matrix, then the
quadratic form associated with A is the scalar
function

Q = x′Ax =
n∑
i=1

aiix
2
i + 2

n∑
i=1

∑
j>i

aijxixj

where x is any n-vector. If x′Ax > 0 for all
n-vectors x except x=0, then matrix A is said
to be positive definite (p.d.). If x′Ax ≥ 0, then
A is said to be positive semi-definite (p.s.d.).
A p.d. matrix A has all positive diagonal ele-
ments and possesses an inverse A−1 which is
also p.d. and a positive determinant. For any
Xn×k, X’X and XX’ are p.s.d. If Xn×k with
n > k has rank k, then X’X is p.d. and non-
singular, implying that X’X−1 exists.

This is the relevant concern for regression, where
we have a data matrix X of n observations on
k variables or regressors, with n > k. If those
regressors are linearly independent, so that X
is of full rank k, we can invert the matrix X’X:
a key step in computing linear regression esti-
mates.



Idempotent matrices

If A is a n × n symmetric matrix, it is said

to be idempotent if and only if A A = A.

The identity matrix, playing the role of the

number 1 in ordinary algebra, is idempotent.

An idempotent matrix has rank equal to its

trace, and it is p.s.d.

If we have a data matrix Xn×k with rank(X)=k,

then

P = X(X ′X)−1X ′ (1)

M = In −X(X ′X)−1X ′ = In − P (2)

are both symmetric, idempotent matrices. Pn×n
has rank k, while Mn×n has rank n − k, since

the trace of P is that of Ik, and its trace is

equal to its rank.



Matrix differentiation

For n-vectors a and x, define f(x) = a′x. Then

the derivative of the function with respect to

its (vector) argument is

∂f/∂x = a′

a 1×n vector. For a n×n symmetric matrix A

with quadratic form Q = x′Ax, the derivative

of Q with respect to its vector argument is

∂Q/∂x = 2x′A

a 1× n vector.

Moments and distributions of random vectors

Operations on random variables can be ex-

pressed in terms of vectors of random vari-

ables. If y is a n-element random vector, then

its expected value E[y] is merely the n-vector

of its expected values. This generalizes to a



random matrix. A linear transformation of y

with non-random matrices yields

E[Ay + b] = AE[y] + b

If y is a n-element random vector, then its

variance-covariance matrix or VCE is the sym-

metric matrix

Var(y) = 
σ2

1
σ21 σ2

2... ...
σn1 σn2 . . . σ2

n


where σ2

j is the variance of yj and σij is the

covariance of yi and yj.

Just as we can perform algebra on scalar vari-

ances and covariances, we can operate on the

VCE of y. Some properties:

(1) If a is a n-element nonrandom vector, Var(a’y)



= [a’ Var(y) a] ≥ 0.

(2) If Var(a’y) > 0 ∀a 6=0, Var(y) is p.d. and

possesses an inverse.

(3) If µ =E[y], V ar(y) = E[(y − µ)(y − µ)
′
].

(4) If the elements of y are uncorrelated, Var(y)

is a diagonal matrix. This is the assumption of

independence of the elements of random vec-

tor y: for instance, of the error terms of a

regression equation.

(5) If in addition Var(yj) = σ2 ∀j, then Var(y)

= σ2In. This is the assumption of homoskedas-

ticity of the elements of random vector y: for

instance, of the error terms of a regression

equation.

(6) For nonrandom Am×n and bn×1, Var(A y

+ b) = [ A Var(y) A’ ].

If y is a n-element multivariate Normal ran-

dom vector with mean vector µ and VCE Σ,

we write y ∼ N(µ,Σ). Properties of the multi-

variate normal distribution:



(1) If y ∼ N(µ,Σ), each element of y is Nor-

mally distributed.

(2) If y ∼ N(µ,Σ), any two elements of y are

independent if and only if they are uncorrelated

(σij = 0).

(3) If y ∼ N(µ,Σ) and A, b are nonrandom,

then A y + b ∼ N(Aµ+ b, AΣA′)

A χ2
n random variable is the sum of n squared

independent standard Normal variables. If u ∼
N(0, In), then u’u ∼ χ2

n.

A t-distributed random variable is the ratio of

a standard Normal variable Z to a χ2
n random

variable X, standardized by its degrees of free-

dom, where the variables Z, X are indepen-

dent. Let u ∼ N(0, In), c be a nonrandom n-

vector and A be a nonrandom, n×n symmetric,

idempotent matrix with rank q, with Ac = 0.

Then the quantity [c′u/
√
c′c]/
√
u′Au ∼ tq.



A F-distributed random variable is the ratio

of two independent χ2 random variables, stan-

dardized by their respective degrees of free-

dom. If u ∼ N(0, In) and A, B are n× n non-

random, symmetric idempotent matrices with

rank(A) = k1 and rank(B) = k2, then

((u′Au)/k1)/(u′Bu)/k2) ∼ F k1
k2

.



Appendix E:

The linear regression model in matrix form

OLS estimation

The multiple linear regression model with k re-

gressors can be written as

yt = β0+β1xt1+β2xt2+. . .+βkxtk+ut, t = 1,2, . . . , n

where yt is the dependent variable for observa-

tion t and x1 . . . xk are the regressors. β0 is the

intercept term (constant) and β1 . . . βk are the

slope parameters.

We define xt as the 1 × (k + 1) row vector

(1, xt1, . . . , xtk) and the column vector

β = (β0, β1, . . . , βk)
′
. Then the model can be

written as

yt = xtβ + ut, t = 1,2, . . . , n



and the entire regression problem as

y = Xβ + u (3)

where y is the n× 1 vector of observations on
the dependent variable, Xn×(k+1) is the matrix
of observations on the regressors, including an
initial column of 1s, and u is the n × 1 vector
of unobservable errors.

OLS estimation involves minimizing the sum
of squared residuals, where the residuals et =
(yt−xtb) where b is the vector of estimated pa-
rameters corresponding to the population pa-
rameters β. Minimizing the sum of squared et
is equivalent to minimizing SSR = e’e with
respect to the (k + 1) elements of b. A so-
lution to this optimization problem involves a
set of (k + 1) first order conditions (FOC)

∂SSR(b)/∂b = 0

and setting those conditions equal to zero. The
FOCs give rise to a set of (k + 1) simultane-
ous equations in the (k + 1) unknowns b. In



matrix form, the residuals may be written as

e = y −Xb, and the FOCs then become

X ′(y −Xb) = 0

X ′y = (X ′X)b

b = (X ′X)−1X ′y (4)

if the inverse exists, that is, if and only if X is

of full (column) rank (k+ 1). If that condition

is satisfied, the cross-products matrix X’X will

be a positive definite matrix. For that to be

so, it must be the case that the columns of

X are linearly independent. This rules out the

case of perfect collinearity, which will arise if

one or more of the regressors can be written

as a linear combination of the others.

Recall that the first column of X is a vector

of 1s. This implies that no other column of

X can take on a constant value, for it would

be a multiple of the first column. Likewise, a



situation where the sum of some of the regres-

sors equals a column of ones will violate this

assumption. This will occur in the case of the

dummy variable trap where a complete set of

mutually exclusive and exhaustive (MEE) in-

dicator variables are included in a regression

containing a constant term.

Given a solution for b, the OLS predicted (fit-

ted) values ŷ = Xb, and the calculated resid-

uals equal e = y − ŷ. From Equation (4),

the first order condition may be written as

X′e = 0. Since the first column of X is a vec-

tor of 1s, the FOC implies that the residuals

sum to zero and have an average value of zero.

The remaining FOCs imply that each column

of X (and any linear combinations of those

columns) has zero covariance with e. This is

algebraically implied by OLS, not an assump-

tion. Since ŷ is such a linear combination, it is

also true that ŷ′e = 0: the residuals have zero

covariance with the predicted values.



Finite sample properties of OLS

The assumptions underlying the OLS model:

1. Linear in parameters: The model can be
written as in Equation (3), with the ob-
served n-vector y, observed n×(k+1) ma-
trix X and n-vector u of unobserved errors.

2. No perfect collinearity: The matrix X has
rank (k + 1).

3. Zero conditional mean: Conditional on the
matrix X, each element of u has zero mean:
E[ut|X] = 0 ∀t.

4. Spherical disturbances: V ar(u|X) = σ2In.
This combines the two assumptions of ho-
moskedasticity, V ar(ut|X) = σ2 ∀t and in-
dependence, Cov(ut, us|X = 0 ∀t 6= s. The



first assumption implies that the ut are iden-

tically distributed, while the second assump-

tion implies that they are independently

distributed, or in a time series context, free

of serial correlation. Taken together, they

allow us to say that u is a i.i.d. random

variable with a scalar variance-covariance

matrix.

Given these four assumptions, we may prove

several theorems related to the OLS estimator:

1. Unbiasedness of OLS: Under assumptions

1, 2 and 3, the OLS estimator b is unbiased

with respect to β.

b = (X ′X)−1X ′y (5)

= (X ′X)−1X ′(Xβ + u)

= (X ′X)−1(X ′X)β + (X ′X)−1X ′u



Taking the conditional expectation,

E[b|X] = β + (X ′X)−1X ′ E(u|X) (6)

= β + (X ′X)−1X ′0

= β

so that b is unbiased.

2. VCE of the OLS estimator: Under assump-

tions 1, 2, 3 and 4,

V ar(b|X) = σ2(X ′X)−1. (7)

From the last line of Equation (6), we have

V ar(b|X) = V ar[(X ′X)−1X ′u|X] (8)

= (X ′X)−1X ′[V ar(u|X)]X(X ′X)−1

Crucially depending on assumption 4, we

can then write

V ar(b|X) = (X ′X)−1X ′(σ2In)X(X ′X)−1

= σ2(X ′X)−1(X ′X)(X ′X)−1

= σ2(X ′X)−1 (9)



This conditional VCE depends on the un-
known parameter σ2, but replacing that
with its consistent estimate s2 it becomes
an operational formula.

3. Gauss–Markov: Under assumptions 1, 2, 3
and 4, b is the Best Linear Unbiased Esti-
mator of β (b is BLUE). Any linear estima-
tor of β can be written as

β̂ = A′y (10)

where A is a n × (k + 1) matrix whose el-
ements are not functions of y but may be
functions of X. Given the model of Equa-
tion (3), we may write β̂ as

β̂ = A′(Xβ + u) = (A′X)β +A′u. (11)

We may then write the conditional expec-
tation of β̂ as

E[β̂|X] = A′Xβ + E[A′u|X]

= A′Xβ +A′E(u|X)

= A′Xβ (12)



The last line following from assumption 3.
For β̂ to be an unbiased estimator, it must
be that E[β̂|X] = β ∀β. Because A′X is
a (k + 1) × (k + 1) matrix, unbiasedness
requires that A′X = Ik+1.

From Equation (11) we have

V ar(β̂|X) = A′[V ar(u|X)]A = σ2A′A (13)

invoking assumption 4 (i.i.d. disturbances).
Therefore

V ar(β̂|X)−
V ar(b|X) = σ2[A′A− (X ′X)−1]

= σ2[A′A−A′X(X ′X)−1X ′A]

= σ2A′[In −X(X ′X)−1X ′]A

= σ2A′MA (14)

where M = [In−X(X ′X)−1X ′], a symmet-
ric and idempotent matrix which is pos-
itive semi-definite (p.s.d.) for any matrix
A. But Equation (14) represents the differ-
ence between the VCE of any arbitrary lin-
ear estimator of β and the VCE of the OLS



estimator. That difference will be the null

matrix if and only if A′A = (X ′X)−1: that

is, if we choose A to reproduce the OLS es-

timator. For any other choice of A, the dif-

ference will be a positive semi-definite ma-

trix, which implies that at least one of the

diagonal elements is larger in the first ma-

trix than in the second. That is, the max-

imum precision estimator of each element

of β can only be achieved by OLS. Any

other linear, unbiased estimator of β will

have a larger estimated variance for at least

one element of β. Thus OLS is BLUE: the

Best (minimum-variance, or most efficient)

Linear Unbiased Estimator of β.

4. Unbiasedness of s2: The unbiased estima-

tor of the error variance σ2 can be calcu-

lated as s2 = e′e/(n−k−1), with E[s2|X] =



σ2 ∀ σ2 > 0.

e = y −Xb (15)

= y −X[(X ′X)−1X ′y]

= My = Mu

where M is defined as above. Since M is
symmetric and idempotent,

e′e = u′M ′Mu = u′Mu (16)

which is a scalar, equal to its trace. So

E[u′Mu|X] = E[tr(u′Mu)|X] (17)

= E[tr(Muu′)|X]

= tr[E(Muu′)|X]

= tr[ME[uu′|X]]

= tr(Mσ2In) = σ2tr(M)

= σ2(n− k − 1)

because tr(M) = tr(In)−tr[X[(X ′X)−1X ′] =
n− tr(Ik+1). Therefore,

E[s2|X] = E[u′Mu|X)/(n− k − 1) = σ2

(18)



Statistical inference

With an additional assumption

5. Normality: conditional on X, the ut are in-

dependently and identically distributed (i.i.d.)

as Normal[0, σ2]. The vector of errors u, condi-

tional on X, is distributed multivariate Normal[0, σ2In].

we may present the theorem

Normality of b: Under assumptions 1,2,3,4,5, b

conditional on X is distributed as multivariate

Normal[β, σ2(X ′X)−1].

with the corollary that under the null hypoth-

esis, t-statistics have a tn−k−1 distribution.

Under normality, b is the minimum variance un-

biased estimator of β, conditional on X, in the

sense that it reaches the Cramer-Rao lower



bound (CRLB) for the VCE of unbiased esti-

mators of β. The CRLB defines the minimum

variance possible for any unbiased estimator—

linear or nonlinear. Since OLS reaches that

bound, it is the most precise unbiased estima-

tor available.


