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Chapter 11:

OLS with time series data

Stationary and weakly dependent time series

The notion of a stationary process is an impor-

tant one when we consider econometric anal-

ysis of time series data. A stationary process

is one whose probability distribution is stable

over time, in the sense that any set of values

(or ensemble) will have the same joint distri-

bution as any other set of values measured at a

different point in time. The stationary process

is identically distributed, in the sense that its

mean and variance will be the same whenever

we measure it. It surely need not be inde-

pendently distributed, and in fact most time



series processes are far from independent. But

(strict) stationarity requires that any correla-

tion between elements of the process must not

be time-varying.

A stochastic process which fails to satisfy these

requirements is said to be a nonstationary pro-

cess. This covers a very wide range of observed

processes because the requirements of station-

arity literally require that all moments of the

process are constant over time. For instance,

any process exhibiting a trend will fail to meet

that requirement in that its mean is changing

over time, even if its variance and covariances

are not.

We often refer to a weaker form of stationarity

known as covariance stationarity (CS). A pro-

cess with a finite second moment, or variance,

is CS if E(xi) is constant, V ar(xi) is constant,

and for any t, h ≥ 1, Cov(xt, xt+h) depends only



on h and not on t. CS focuses on only the

first two moments of the stochastic process,

and is in that sense a less restrictive condition

than strict stationarity. Nevertheless, a trend-

ing time series will not be CS.

If we want to analyze the relationship between

two or more time series variables, we must as-

sume some sort of stability over time. Their

joint distribution may include trending behav-

ior, but if a model of that behavior is to be

sensible there must be some stable relation-

ship between them.

We also must be familiar with the concept of

weak dependence, which places restrictions on

the relationship between xt and xt+h as h gets

large. A stationary time series is said to be

weakly dependent (WD) if xt and xt+h are

“almost independent” as h increases without

bound. For a CS time series, this corresponds



to the correlation between xt and xt+h going

to zero “sufficiently quickly” as h→∞. Such a

series is said to be asymptotically uncorrelated.

The simplest example of a WD series (beyond

the trivial case of an i.i.d. series) is a mov-

ing average process (MA). The simplest form,

MA(1), is

xt = et + α1et−1, t = 1,2, . . . (1)

where et ∼ (0, σ2
e ). In this process, xt is a

weighted average of et and et−1. Adjacent

terms in the x process are correlated because

Cov(xt, xt−1) = α1V ar(e), and Corr(xt, xt−1) =

α1/(1+α2
1). But if we consider elements of the

sequence two (or more) periods apart, they are

uncorrelated. The MA(1) process is said to

have a finite memory of one period, in that

the prior period’s value matters, but observa-

tions prior to that have no effect on the current

value of the process. Given that et is i.i.d., xt



is a stationary process, and exhibits weak de-

pendence.

The other main building block of time series

processes is the autoregressive process (AR).

The simplest such process, AR(1), is

yt = ρ1yt−1 + et, t = 1,2, . . . (2)

With the initial condition y0 = 0 and et ∼
(0, σ2

e ), yt will be a stable stochastic process

if we satisfy the condition |ρ1| < 1. Unlike

the MA(1) process, the AR(1) process has in-

finite memory because every past value of the

process affects the current value. However,

as the effects of past values are weighted by

powers of the fraction ρ1, those effects damp

to zero, and the process can be shown to be

asymptotically uncorrelated. First let us show

that it is CS. Given the assumption that et
is distributed independently of y0, we can see

that V ar(yt) = ρ2
1V ar(yt−1) +V ar(et), or σ2

y =



ρ2
1σ

2
y + σ2

e . Given the stability condition, this

implies that

σ2
y =

σ2
e

(1− ρ2
1)

(3)

where it may be seen that if ρ1 = 1 this vari-

ance goes to infinity.

By substitution, we may calculate the covari-

ance between yt and yt+h, h ≥ 1 as ρh1E(y2
t ) =

ρh1σ
2
y . For a CS series, the standard deviation

of yt is a constant, so that Corr(xt, xt+h) =

ρh1, implying that successive terms in the se-

quence are correlated by ρ1. Even if ρ1 is large,

e.g., 0.9, powers of that fraction approach zero

rapidly because they follow a geometric pro-

gression.

A trending series, although not CS, can be

weakly dependent, and a series that is station-

ary around a deterministic time trend is said



to be trend stationary. We can use such se-

ries in regression models as long as we take

proper account of the presence of a trend: for

instance, it would be a mistake to “explain” a

series that has an obvious trend by regressing

it on a series devoid of trend.

Asymptotic properties of OLS

To work with OLS regression in a time series

context, we add several assumptions to those

made in the context of a cross section model.

First, we assume that the set of variables [x, y]

is stationary and weakly dependent. Stationary

is not critical in this context, but weak depen-

dence is very important.

The standard zero conditional mean assump-

tion is modified for time series data to state

that the explanatory variables [x] are contem-

poraneously exogenous of the error process:



E(ut|x) = 0. This assumption does not restrict
the relationship between the regressors and the
error process at other points in time; it merely
states that their current values are indepen-
dent at each point in time. For instance, we
may have a model such as

yt = β0 + β1zt1 + β2zt2 + ut (4)

The contemporaneous exogeneity condition will
hold if the conditional mean E(ut|zt1, zt2) = 0.
This condition does not rule out, for instance,
correlation between ut−1 and z1t, as might arise
if z1 is a policy variable that reacts to past
shocks.

Under these assumptions—plus the assump-
tion that there is no perfect collinearity in the
regressor matrix—the OLS estimators are con-
sistent, but not necessarily unbiased.

A finite distributed lag model, such as

yt = α0 + β0zt + β1zt−1 + β2zt−2 + ut (5)



is associated with the zero conditional mean

assumption that the error term is independent

of current and all lagged values of z.

In these two contexts, the regressors could be

strictly exogenous (for instance, in the absence

of feedback that would arise in a policy con-

text). But in the AR(1) model, strict exogene-

ity is not possible:

yt = β0 + β1yt−1 + ut (6)

where we assume that the error has a zero

expected value given the entire history of y:

E(ut|yt−1, yt−2, . . .) = 0 (7)

and these equations can be combined to yield

E(yt|yt−1, yt−2, . . .) = E(yt|yt−1) = β0 + β1yt−1

(8)

This last expression summarizes the “first or-

der” nature of the AR(1) model: once the first

lag of y is included, no additional lags of y



affect the expected value of y in this linear
relationship. But in this model, the strict ex-
ogeneity assumption cannot hold, since that
would require that ut is independent of all val-
ues of the regressor, past, present and future.
This condition obviously does not hold because
ut is a component of the following period’s
yt−1. In fact, Cov(yt, ut) = V ar(ut) > 0. For
weak dependence to hold, the stability condi-
tion |β1| < 0 must be satisfied.

To use standard inference procedures, we must
impose assumptions of homoskedasticity and
no serial correlation on the error process. For
homoskedasticity, we assume that this holds in
a contemporaneous fashion: V ar(ut|xt) = σ2.

For no serial correlation, we assume that for
all t 6= s, E(utus|xtxs) = 0.

Just as in the cross section case, under the as-
sumptions we have made (including contempo-
raneous homoskedasticity and serial indepen-
dence), the OLS estimators are asymptotically



normally distributed. This implies that the

usual OLS standard errors, t statistics and F

statistics are asymptotically valid.

We can apply these techniques to test a ver-

sion of the efficient markets hypothesis: in the

strict form, if markets are efficient, past infor-

mation on stock returns should not be infor-

mative about current returns: the market is

not forecastable. In the terminology we have

used here,

E(yt|yt−1, yt−2, . . .) = E(yt) (9)

Under the EMH, the best predictor of market

returns (at, say, weekly frequency) will be the

mean of market returns over the sample. Un-

der the alternative hypothesis that the market

is forecastable (i.e. that technical analysis has

some value), an AR model should have some

explanatory power. In the simplest case, we fit

an AR(1) model to weekly NYSE returns data,



and find that the prior week’s return is not a

significant predictor of current returns. Even

if we consider an expanded model: the AR(2),

yt = β0 + β1yt−1 + β2yt−2 + ut (10)

the coefficients on the two lagged terms are

individually and jointly insignificant. Thus, for

the NYSE as a whole, it would appear that

there is no clear evidence against the EMH.

We might find different results if we focused on

a specific company’s stock, but for the entire

market efficiency appears to reign.

As another example, Wooldridge demonstrates

how we may estimate an expectations-augmented

Phillips curve (EAPC):

ṗt − ṗet = β1(Ut − µ0) + et (11)

where ṗ represents inflation, ṗe refers to ex-

pected inflation, U is the unemployment rate

and parameter µo is a constant representing

the natural rate of unemployment.



We must specify a model of expectations for-

mation. An adaptive expectations model spec-

ifies that expectations today depend on re-

cently observed values of the variable. Under

the näıve model that ṗet = ṗt−1, we can write

∆ṗt = β0 + β1Ut + et (12)

where β0 = −β1µ0. The EAPC relates the

change in inflation to the level of unemploy-

ment and a supply shock, et. If supply shocks

are contemporaneously uncorrelated with the

unemployment rate, we can consistently esti-

mate this equation with OLS. The coefficient

on U from annual data is -0.543 with a stan-

dard error of 0.230, suggesting that there is

a statistically significant relationship between

unemployment and changes in inflation. We

may use nlcom to estimate the natural rate of

unemployment:

. nlcom _b[_cons]/-_b[unem]



which leads to a point estimate of 5.585 with

a standard error of 0.657, leading to a 95%

confidence interval of (4.262, 6.908).

Using highly persistent time series

We have discussed how OLS estimation tech-

niques may be employed when we have time

series exhibiting weak dependence. Unfortu-

nately, many economic and financial time se-

ries do not possess that property, but are rather

characterized as highly persistent or strongly

dependent. We consider now how those series

may be analyzed in econometric models.

In the simple AR(1) model

yt = ρ1yt−1 + et (13)

the assumption that |ρ1| < 1 is crucial in de-

termining weak dependence. Many time series



are better characterized by an AR(1) model

with ρ1 = 1: the so-called random walk model

yt = yt−1 + et

∆yt = et (14)

We assume that et is i.i.d.,∼ (0, σ2
e ), and in-

dependently distributed of the initial value y0.

In this model, the differences of yt will be in-

dependent of each other (and thus weakly de-

pendent as well), but the levels of yt are not.

Since by back-substitution we may write

yt =
t∑

j=1

ej + y0 (15)

the current level of yt may be written as its

initial condition plus the unweighted sum of

all errors in the interim: so that Eyt = Ey0.

We often assume that y0 = 0, so that the

expectation of yt is also zero. Thus, the mean

of yt is not time-varying if y follows a random

walk.



The variance does change over time, though:

V ar(yt) =
t∑

j=0

V ar(et−j = σ2
e t (16)

showing that the variance of y increases linearly

with time. If we assume that the process began

long ago, the variance tends toward infinity.

The process cannot be stationary or covariance

stationary as a consequence.

Furthermore, the random walk process displays

highly persistent behavior in the sense that the

memory of the process is not only infinite—as

it is for any stable AR process—but that values

of the process long ago have as much impor-

tance for today’s value as more recent values.

In a stable AR process, the effect of past val-

ues is damped so that an innovation long ago

no longer has a meaningful effect on today’s

value of the process. In the random walk pro-

cess, that is not so: today’s value fully incor-

porates every past innovation to the process.



Assuming y0 = 0, this implies that

E(yt+h|yt) = yt, ∀h ≥ 1 (17)

so that our best forecast of all future values

of the process is today’s realized value. In the

stable AR case, this optimal forecast becomes

E(yt+h|yt) = ρh1yt, ∀h ≥ 1 (18)

which approaches the unconditional expected

value, Eyt = y0 = 0 as h increases.

The random walk model also implies that the

correlations of the process are very large when

yt follows a random walk:

Corr(yt, yt+h) =
√
t/(t+ h) (19)

This covariance changes over time with t, so

that the process cannot be covariance station-

ary. For fixed t, the correlation tends to zero

as h→∞, but it does so very slowly.



Despite the peculiar properties of the random

walk process, it is not so evident that an ob-

served process actually is a random walk. An

AR(1) process with a very large ρ1 (e.g. 0.99)

will mimic a random walk process quite closely,

even though it is a stationary process with fi-

nite variance.

We often speak of random walk processes as

possessing a unit root, since using the lag op-

erator L we may write equation (17) as

(1− L)yt = et (20)

or in more general terms as

(1− λL)yt = et (21)

where we are searching for a root of the poly-

nomial

(1− λx) = 0, (22)

implying a root of 1/λ. For stability of the

AR(1) model, 1/λ must lie outside the unit



circle, which requires that λ itself lie inside the

unit circle. If λ lies on the unit circle, we have

a unit root in the equation.

In economic terms, it is very important to know

whether a particular time series is highly persis-

tent (unit root process) or not. For instance,

one implication of the random walk process

is that the history of the process has no rele-

vance for its future course. If stock returns fol-

low a random walk, for example, then technical

analysis—examining patterns in recent move-

ments of the stock price—is absolutely worth-

less. At the macro level, if GDP is weakly de-

pendent, then shocks will have a time-limited

effect on its future values. If GDP follows a

random walk, on the other hand, the effects of

a particular shock will be long-lasting.

Part of the difficulty in distinguishing between

random walk processes and weakly dependent



processes is that the former process may be

the random walk with drift:

yt = a0 + yt−1 + et

∆yt = a0 + et (23)

so that the changes in yt will be on average

a0 units. This is known as a stochastic trend

process, in that the level of the process will

be increasing by a0 units on average, but vary-

ing stochastically around that increment. In

contrast, the deterministic trend process

yt = β0 + β1t+ ρ1yt−1 + et (24)

will change by a fixed β1 units per period.

As we will discuss, if we misclassify an ob-

served process as a deterministic trend when

it is really a stochastic trend (random walk)

process, we run the risk of running a spurious

regression. If we are fairly certain that a pro-

cess is a random walk process (often termed an



I(1) process, for “integrated of order one”) we

may transform it to a weakly dependent pro-

cess by taking its first differences (as above).

The first difference of such an I(1) process

will be stationary, or I(0): integrated of order

zero. The differencing transformation will also

remove any linear trend; if applied to Equation

(24), for instance, we will have the equation

∆yt = β1 + ρ1∆yt−1 + ∆et (25)

Notice, however, that this transformation in-

duces a correlation between regressor and error

by including ∆yt−1: a term that should not be

present if the yt process was a random walk.

The problem of classification of an observed

series as a deterministic trend versus a stochas-

tic trend is complicated by the difficulty of test-

ing that ρ1 = 1: a topic which we will take up

in the next section of the course. For now,

we simply note that there may be considerable



risk in working with models expressed in levels

(or log-levels) of economic and financial series

that may indeed be highly persistent (or unit

root) processes.

Dynamically complete models

If we have a dynamic model with a certain

number of lags on both the response variable

and the regressor:

yt = β0 + β1zt + β2yt−1 + β3zt−1 + et (26)

as the data generating process, then if we as-

sume that

E(ut|zt, yt−1, zt−1, yt−2, zt−2, . . .) = 0 (27)

this implies that

E(yt|zt, yt−1, zt−1, yt−2, zt−2, . . .) = E(yt|zt, yt−1, zt−1)

(28)

or that once we have controlled for current and

past z and the first lag of y, no further lags of



either z or y affect current y. Once we have

included sufficient lags of the response vari-

able and regressors so that further lags do not

matter, we say that the model is dynamically

complete. Since the assumption of Equation

(27) implies that

E(ut|zt, ut−1, zt−1, ut−2, zt−2, . . .) = 0 (29)

it follows that the error process will be serially

uncorrelated. On the other hand, if a model

is not dynamically complete, then there are

omitted dynamics which will cause bias and in-

consistency in the coefficients of the included

regressors as well as serial correlation in the

errors, which will include the net effect of the

omitted variables.



Chapter 12.6:

ARCH models

Heteroskedasticity can occur in time series mod-

els, just as it may in a cross-sectional con-

text. It has the same consequences: the OLS

point estimates are unbiased and consistent,

but their standard errors will be inconsistent,

as will hypothesis test statistics and confidence

intervals. We may prevent that loss of consis-

tency by using heteroskedasticity-robust stan-

dard errors. The “Newey–West” or HAC stan-

dard errors available from newey in the OLS

context or ivreg2 in the instrumental variables

context will be robust to arbitrary heteroskedas-

ticity in the error process as well as serial cor-

relation.

The most common model of heteroskedastic-

ity employed in the time series context is that



of autoregressive conditional heteroskedastic-

ity, or ARCH. As proposed by Nobel laureate

Robert Engle in 1982, an ARCH model starts

from the premise that we have a static regres-

sion model

yt = β0 + β1zt + ut (30)

and all of the Gauss–Markov assumptions hold,

so that the OLS estimators are BLUE. This

implies that V ar(ut|Z) is constant. But even

when this unconditional variance of ut is con-

stant, we may have time variation in the condi-

itional variance of ut:

E(u2
t |ut−1, ut−2, . . .) = E(u2

t |ut−1) = α0+α1u
2
t−1

(31)

so that the conditional variance of ut is a linear

function of the squared value of its predeces-

sor. If the original ut process is serially uncor-

related, the variance conditioned on a single



lag is identical to that conditioned on the en-

tire history of the series. We can rewrite this

as

ht = α0 + α1u
2
t−1 (32)

where ut =
√
ht vt, vt ∼ (0,1). This formula-

tion represents the ARCH(1) model, in which

a single lagged u2 enters the ARCH equation.

A higher-order ARCH equation would include

additional lags of u2. To ensure a positive vari-

ance, α0 > 0 and α1 > 0. When α1 > 0, the

squared errors are positively serially correlated

even though the ut themselves are not.

Since we could estimate Equation (30) and de-

rive OLS b which are BLUE, why should we be

concerned about ARCH? First, we could derive

consistent estimates of b which are asymptot-

ically more efficient than the OLS estimates,

since the ARCH structure is no longer a linear

model. Second, the dynamics of the condi-

tional variance are important in many contexts:



particularly financial models, in which move-

ments in volatility are themselves important.

Many researchers have found “ARCH effects”

in higher-frequency financial data, and to the

extent to which they are present, we may want

to take advantage of them. We may test for

the existence of ARCH effects in the residuals

of a time series regression by using the com-

mand estat archlm. The null hypothesis is that

of no ARCH effects; a rejection of the null im-

plies the existence of significant ARCH effects,

or persistence in the squared errors.

The ARCH model is inherently nonlinear. If we

assume that the ut are distributed Normally, we

may use a maximum likelihood procedure such

as that implemented in Stata’s arch command

to jointly estimate Equations (30) and (33).

The ARCH model has been extended to a gen-

eralized form which has proven to be much



more appropriate in many contexts. In the sim-

plest example, we may write

ht = α0 + α1u
2
t−1 + γ1ht−1 (33)

which is known as the GARCH(1,1) model since

it involves a single lag of both the ARCH term

and the conditional variance term. We must

impose the additional constraint that γ1 > 0

to ensure a positive variance.

We may also have a so-called ARCH-in-mean

model, in which the ht term itself enters the

regression equation. This sort of model would

be relevant if we had a theory that suggests

that the level of a variable might depend on

its variance, which may be very plausible in fi-

nancial markets contexts or in terms of, say, in-

flation, where we often presume that the level

of inflation may be linked to inflation volatil-

ity. In such instances we may want to specify



a ARCH- or GARCH-in-mean model and con-

sider interactions of this sort in the conditional

mean (level) equation.

Alternative GARCH specifications

A huge literature on alternative GARCH spec-

ifications exists; many of these models are pre-

programmed in Stata’s arch command, and

references for their analytical derivation are given

in the Stata manual. One of particular inter-

est is Nelson’s (1991) exponential GARCH, or

EGARCH. He proposed:

loght = η +
∞∑
j=1

λj
(∣∣∣εt−j∣∣∣− E ∣∣∣εt−j∣∣∣+ θεt−j

)
which is then parameterized as a rational lag of

two finite–order polynomials, just as in Boller-

slev’s GARCH. Advantages of the EGARCH

specification include the positive nature of ht
irregardless of the estimated parameters, and



the asymmetric nature of the impact of inno-

vations: with θ 6= 0, a positive shock will have

a different effect on volatility than will a neg-

ative shock, mirroring findings in equity mar-

ket research about the impact of “bad news”

and “good news” on market volatility. For

instance, a simple EGARCH(1,1) model will

provide a variance equation such as

loght = −δ0+δ1zt−1+δ2

∣∣∣∣zt−1 −
√

2/π
∣∣∣∣+δ3 loght−1

where zt = εt/σt, which is distributed as N(0,1).

Nelson’s model is only one of several exten-

sions of GARCH that allow for asymmetry, or

consider nonlinearities in the process generat-

ing the conditional variance: for instance, the

threshold ARCH model of Zakoian (1990) and

the Glosten et al. model (1993).


