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Limited dependent variables and sample

selection

We consider models of limited dependent vari-

ables in which the economic agent’s response

is limited in some way. The dependent vari-

able, rather than being continuous on the real

line (or half–line), is restricted. In some cases,

we are dealing with discrete choice: the re-

sponse variable may be restricted to a Boolean

or binary choice, indicating that a particular

course of action was or was not selected. In

others, it may take on only integer values,

such as the number of children per family, or

the ordered values on a Likert scale. Alterna-

tively, it may appear to be a continuous vari-

able with a number of responses at a thresh-

old value. For instance, the response to the

question “how many hours did you work last



week?” will be recorded as zero for the non-

working respondents. None of these measures

are amenable to being modeled by the linear

regression methods we have discussed.

Binomial logit and probit models

We first consider models of Boolean response

variables, or binary choice. In such a model,

the response variable is coded as 1 or 0, cor-

responding to responses of True or False to

a particular question. A behavioral model of

this decision could be developed, including a

number of “explanatory factors” (we should

not call them regressors) that we expect will

influence the respondent’s answer to such a

question. But we should readily spot the flaw

in the linear probability model:

Ri = β1 + β2Xi2 + . . .+ βkXik + ui (1)

where we place the Boolean response variable

in R and regress it upon a set of X variables.



All of the observations we have on R are ei-

ther 0 or 1. They may be viewed as the ex

post probabilities of responding “yes” to the

question posed. But the predictions of a lin-

ear regression model are unbounded, and the

model of Equation (1), estimated with regress,

can produce negative predictions and predic-

tions exceeding unity, neither of which can be

considered probabilities. Because the response

variable is bounded, restricted to take on val-

ues of {0,1}, the model should be generat-

ing a predicted probability that individual i will

choose to answer Yes rather than No. In such

a framework, if βj > 0, those individuals with

high values of Xj will be more likely to re-

spond Yes, but their probability of doing so

must respect the upper bound. For instance,

if higher disposable income makes new car pur-

chase more probable, we must be able to in-

clude a very wealthy person in the sample and

still find that the individual’s predicted proba-

bility of new car purchase is no greater than



1.0. Likewise, a poor person’s predicted prob-

ability must be bounded by 0.

Although it is possible to estimate Equation

(1) with OLS the model is likely to produce

point predictions outside the unit interval. We

could arbitrarily constrain them to either 0 or

1, but this linear probability model has other

problems: the error term cannot satisfy the

assumption of homoskedasticity. For a given

set of X values, there are only two possible

values for the disturbance: −Xβ and (1−Xβ):

the disturbance follows a Binomial distribution.

Given the properties of the Binomial distribu-

tion, the variance of the disturbance process,

conditioned on X, is

V ar(u|X) = Xβ (1−Xβ) (2)

There is no constraint to ensure that this quan-

tity will be positive for arbitrary X values. There-

fore, it will rarely be productive to utilize re-

gression with a binary response variable; we



must follow a different strategy. Before pro-

ceeding to develop that strategy, let us con-

sider an alternative formulation of the model

from an economic standpoint.

The latent variable approach

A useful approach to motivate such an econo-

metric model is that of a latent variable. Ex-

press the model of Equation (1) as:

y∗i = β1 + β2Xi2 + . . .+ βkXik + ui (3)

where y∗ is an unobservable magnitude which

can be considered the net benefit to individual

i of taking a particular course of action (e.g.,

purchasing a new car). We cannot observe

that net benefit, but can observe the outcome

of the individual having followed the decision

rule

yi = 0ify∗i < 0

yi = 1ify∗i ≥ 0 (4)



That is, we observe that the individual did or
did not purchase a new car in 2005. If she
did, we observed yi = 1, and we take this as
evidence that a rational consumer made a de-
cision that improved her welfare. We speak of
y∗ as a latent variable, linearly related to a set
of factors X and a disturbance process u. In
the latent variable model, we must make the
assumption that the disturbance process has a
known variance σ2

u. Unlike the regression prob-
lem, we do not have sufficient information in
the data to estimate its magnitude. Since we
may divide Equation (3) by any positive σ with-
out altering the estimation problem, the most
useful strategy is to set σu = σ2

u = 1.

In the latent model framework, we model the
probability of an individual making each choice.
Using equations (3) and (4) we have

Pr[y∗ > 0|X] =

Pr[u > −Xβ|X] =

Pr[u < Xβ|X] =

Pr[y = 1|X] = Ψ(y∗i ) (5)



The function Ψ(·) is a cumulative distribu-

tion function (CDF ) which maps points on

the real line {−∞,∞} into the probability mea-

sure {0,1}. The explanatory variables in X are

modeled in a linear relationship to the latent

variable y∗. If y = 1, y∗ > 0 implies u < Xβ.

Consider a case where ui = 0. Then a positive

y∗ would correspond to Xβ > 0, and vice versa.

If ui were now negative, observing yi = 1 would

imply that Xβ must have outweighed the neg-

ative ui (and vice versa). Therefore, we can

interpret the outcome yi = 1 as indicating that

the explanatory factors and disturbance faced

by individual i have combined to produce a pos-

itive net benefit. For example, an individual

might have a low income (which would other-

wise suggest that new car purchase was not

likely) but may have a sibling who works for

Toyota and can arrange for an advantageous

price on a new vehicle. We do not observe



that circumstance, so it becomes a large pos-

itive ui, explaining how (Xβ + ui) > 0 for that

individual.

The two common estimators of the binary choice

model are the binomial probit and binomial

logit models. For the probit model, Ψ(·) is

the CDF of the Normal distribution function

(Stata’s norm function):

Pr[y = 1|X] =
∫ Xβ
−∞

ψ(t)dt = Ψ(Xβ) (6)

where ψ(·) is the probability density function

(PDF ) of the Normal distribution: Stata’s normden

function. For the logit model, Ψ(·) is the CDF

of the Logistic distribution:∗

Pr[y = 1|X] =
exp(Xβ)

1 + exp(Xβ)
(7)

∗The PDF of the Logistic distribution, which is needed
to calculate marginal effects, is ψ(z) = exp(z)/[1 +
exp(z)]2.



The two models will produce quite similar re-
sults if the distribution of sample values of
yi is not too extreme. However, a sample in
which the proportion yi = 1 (or the proportion
yi = 0) is very small will be sensitive to the
choice of CDF . Neither of these cases are re-
ally amenable to the binary choice model. If a
very unusual event is being modeled by yi, the
“näıve model” that it will not happen in any
event is hard to beat. The same is true for
an event that is almost ubiquitous: the näıve
model that predicts that everyone has eaten a
candy bar at some time in their lives is quite
accurate.

We may estimate these binary choice models
in Stata with the commands probit and logit,
respectively. Both commands assume that the
response variable is coded with zeros indicat-
ing a negative outcome and a positive, non-
missing value corresponding to a positive out-
come (i.e., I purchased a new car in 2005).



These commands do not require that the vari-

able be coded {0,1}, although that is often the

case. Because any positive value (including all

missing values) will be taken as a positive out-

come, it is important to ensure that missing

values of the response variable are excluded

from the estimation sample either by dropping

those observations or using an if depvar < .

qualifier.

Marginal effects and predictions

One of the major challenges in working with

limited dependent variable models is the com-

plexity of explanatory factors’ marginal effects

on the result of interest. That complexity

arises from the nonlinearity of the relationship.

In Equation (5), the latent measure is trans-

lated by Ψ(y∗i ) to a probability that yi = 1.

While Equation (3) is a linear relationship in



the β parameters, Equation (5) is not. There-

fore, although Xj has a linear effect on y∗i , it

will not have a linear effect on the resulting

probability that y = 1:

∂Pr[y = 1|X]

∂Xj
=
∂Pr[y = 1|X]

∂Xβ
·
∂Xβ

∂Xj
=

Ψ′(Xβ) · βj = ψ(Xβ) · βj.

The probability that yi = 1 is not constant over

the data. Via the chain rule, we see that the

effect of an increase in Xj on the probability

is the product of two factors: the effect of Xj
on the latent variable and the derivative of the

CDF evaluated at y∗i . The latter term, ψ(·), is

the probability density function (PDF ) of the

distribution.

In a binary choice model, the marginal effect

of an increase in factor Xj cannot have a con-

stant effect on the conditional probability that

(y = 1|X) since Ψ(·) varies through the range



of X values. In a linear regression model, the

coefficient βj and its estimate bj measures the

marginal effect ∂y/∂Xj, and that effect is con-

stant for all values of X. In a binary choice

model, where the probability that yi = 1 is

bounded by the {0,1} interval, the marginal

effect must vary. For instance, the marginal

effect of a one dollar increase in disposable in-

come on the conditional probability that (y =

1|X) must approach zero as Xj increases. There-

fore, the marginal effect in such a model varies

continuously throughout the range of Xj, and

must approach zero for both very low and very

high levels of Xj.

When using Stata’s probit command, the re-

ported coefficients (computed via maximum

likelihood) are b, corresponding to β in Equa-

tion (6). You can use margins to compute the

marginal effects. If a probit estimation is fol-

lowed by the command margins. dydx( all),



the dF/dx values will be calculated. By default,

these are the average marginal effects (AMEs),

calculated for each individual’s values of the

regressors. These may be contrasted with the

marginal effects at the mean (MEMs), calcu-

lated by older Stata commands such as mfx or

dprobit. Researchers today generally recom-

mend the use of AMEs, rather than MEMs,

as they take the empirical distributions of the

regressors into account. If those distributions

are very skewed (as they are, for instance, for

income or wealth as an explanatory variable),

the AMEs for a given model may differ consid-

erably from the MEMs.

The margins command’s at() option can be

used to compute the effects at a particular

point in the sample space, or for a range of

values of particular explanatory variables, leav-

ing others at their sample values. For instance,

margins, dydx( all) at(mpg=(20(2)30)) will com-

pute the marginal effects of each explanatory



variable at six values of mpg. The margins com-

mand may also be used to calculate elasticities

and semi-elasticities with the eyex(), dyex()

and eydx() options.

After estimating a probit model, the predict

command may be used, with a default option

pr, the predicted probability of a positive out-

come. The xb option may be used to calculate

the index function for each observation: that

is, the predicted value of y∗i from Equation (5),

which is in z-units (those of a standard Nor-

mal variable). For instance, an index function

value of 1.69 will be associated with a pre-

dicted probability of 0.95 in a large sample.

After estimating a probit model, the predict

command may be used, with a default option

p, the predicted probability of a positive out-

come. The xb option may be used to calculate

the index function for each observation: that



is, the predicted value of y∗i from Equation (5),

which is in z-units (those of a standard Nor-

mal variable). For instance, an index function

value of 1.69 will be associated with a pre-

dicted probability of 0.95 in a large sample.

Binomial logit and grouped logit

When the Logistic CDF is employed in Equa-

tion (6), the probability (πi) of y = 1, condi-

tioned on X, is [exp(Xβ)/(1 + exp(Xβ)]. Un-

like the CDF of the Normal distribution, which

lacks an inverse in closed form, this function

may be inverted to yield

log

(
πi

1− πi

)
= Xβ. (8)

This expression is termed the logit of πi, with

that term being a contraction of the log of

the odds ratio. The odds ratio reexpresses the

probability in terms of the odds of y = 1. It is



not applicable to microdata in which yi equals

zero or one, but is well defined for averages

of such microdata. For instance, in the 2004

U.S. presidential election, the ex post probabil-

ity of a Massachusetts resident voting for John

Kerry according to cnn.com was 0.62, with a

logit of log (0.62/(1− 0.62)) = 0.4895. The

probability of that person voting for George

Bush was 0.37, with a logit of −0.5322. Say

that we had such data for all 50 states. It

would be inappropriate to use linear regression

on the probabilities voteKerry and voteBush,

just as it would be inappropriate to run a re-

gression on individual voter’s voteKerry and

voteBush indicator variables. In this case, the

glogit (grouped logit) command may be used

to produce weighted least squares estimates

for the model on state-level data. Alterna-

tively, the blogit command may be used to

produce maximum-likelihood estimates of that

model on grouped (or “blocked”) data. The



equivalent commands gprobit and bprobit may

be used to fit a probit model to grouped data.

What if we have microdata in which voters’

preferences are recorded as indicator variables,

for example voteKerry = 1 if that individual voted

for John Kerry, and vice versa? As an alterna-

tive to fitting a probit model to that response

variable, we may fit a logit model with logit.

This command will produce coefficients which,

like those of probit, express the effect on the

latent variable y∗ of a change in Xj (see Equa-

tion (8). Similar to the earlier use of dprobit,

we may use the logistic command to com-

pute coefficients which express the effects of

the explanatory variables in terms of the odds

ratio associated with that explanatory factor.

Given the algebra of the model, the odds ratio

is merely exp(bj) for the jth coefficient esti-

mated by logit, and may also be requested



by specifying the or option on the logit com-

mand. It should be clear that logistic regres-

sion is intimately related to the binomial logit

model, and is not an alternative econometric

technique to logit. The documentation for

logistic states that the computations are car-

ried out by calling logit.

As in the case of probit, the default statistic

calculated by predict after logit is the proba-

bility of a positive outcome. The margins com-

mand will produce marginal effects expressing

the effect of an infinitesimal change in each X

on the probability of a positive outcome, eval-

uated by default at the multivariate point of

means. Elasticities and semi-elasticities may

also be calculated.

Evaluating specification and goodness of fit

Since both the binomial logit and binomial pro-

bit estimators may be applied to the same model,



you might wonder which should be used. The

CDFs underlying these models differ most in

the tails, producing quite similar predicted prob-

abilities for non-extreme values of Xβ. Since

the likelihood functions of the two estimators

are not nested, there is no obvious way to

test one against the other.The coefficient es-

timates of probit and logit from the same

model will differ algebraically, since they are

estimates of (βj/σu). While the variance of

the standard Normal distribution is unity, the

variance of the Logistic distribution is π2/3 =

3.290, causing reported logit coefficients to be

larger by a factor of about
√

3.29 = 1.814.

However, we often are concerned with the marginal

effects generated by these models rather than

their estimated coefficients. From the exam-

ples above, the magnitude of the marginal ef-

fects generated by margins are likely to be quite

similar for both estimators.



Tests for appropriate specification of a subset

model may be carried out, as in the regression

context, with the test command. The test

statistics for exclusion of one or more explana-

tory variables are reported as χ2 rather than F -

statistics due to the use of large-sample max-

imum likelihood estimation techniques. How

can we judge the adequacy of a binary choice

model estimated with probit or logit? Just

as the “ANOVA F” tests a regression specifi-

cation against the null model in which all re-

gressors are omitted, we may consider a null

model for the binary choice specification to be

Pr[y = 1] = ȳ. Since the mean of an indicator

variable is the sample proportion of 1s, it may

be viewed as the unconditional probability that

y = 1. We may contrast that with the con-

ditional probabilities generated by the model

that takes the explanatory factors X into ac-

count. Since the likelihood function for the

null model can readily be evaluated in either



the probit or logit context, both commands

produce a likelihood ratio test. Although this

likelihood ratio test provides a statistical basis

for rejection of the null model versus the es-

timated model, there is no clear consensus on

a measure of goodness of fit analogous to R2

for linear regression. Stata produces a measure

called Pseudo R2 for both commands.

Ordered logit and probit models

We earlier discussed the issues related to the

use of ordinal variables: those which indicate

a ranking of responses, rather than a cardinal

measure, such as the codes of a Likert scale of

agreement with a statement. Since the values

of such an ordered response are arbitrary, an

ordinal variable should not be treated as if it

was measurable in a cardinal sense and entered

into a regression, either as a response variable

or as a regressor. However, what if we want to



model an ordinal variable as the response vari-

able, given a set of explanatory factors? Just

as we can use binary choice models to evaluate

the factors underlying a decision without being

able to quantify the net benefit of making that

choice, we may employ a generalization of the

binary choice framework to model an ordinal

variable using ordered probit or ordered logit

estimation techniques.

In the latent variable approach to the binary

choice model, we observe yi = 1 if the individ-

ual’s net benefit is positive: i.e., y∗i > 0. The

ordered choice model generalizes this concept

to the notion of multiple thresholds. For in-

stance, a variable recorded on a five-point Lik-

ert scale will have four thresholds. If y∗ ≤ κ1,

we observe y = 1. If κ1 < y∗ ≤ κ2, we observe

y = 2. If κ2 < y∗ ≤ κ3, we observe y = 3, and

so on, where the κ values are the thresholds.

In a sense, this can be considered imprecise



measurement: we cannot observe y∗ directly,

but only the range in which it falls. This is

appropriate for many forms of microeconomic

data that are “bracketed” for privacy or sum-

mary reporting purposes. Alternatively, the ob-

served choice might only reveal an individual’s

relative preference.

The parameters to be estimated are a set of

coefficients β corresponding to the explanatory

factors in X as well as a set of (I − 1) thresh-

old coefficients κ corresponding to the I al-

ternatives. In Stata’s implementation of these

estimators via commands oprobit and ologit,

the actual values of the response variable are

not relevant. Larger values are taken to corre-

spond to higher outcomes. If there are I pos-

sible outcomes (e.g., 5 for the Likert scale),

a set of threshold coefficients or cut points

{κ1, κ2, . . . , κI−1} is defined, where κ0 = −∞



and κI = ∞. Then the model for the jth ob-

servation defines:

Pr[yj = i] = Pr[κi−1 < β1X1j + β2X2j + . . .

+βkXkj + uj < κi]

where the probability that individual j will choose

outcome i depends on the product Xβ falling

between cut points (i− 1) and i. This is a di-

rect generalization of the two-outcome binary

choice model, which has a single threshold at

zero. As in the binomial probit model, we as-

sume that the error is normally distributed with

variance unity (or distributed Logistic with vari-

ance π2/3 in the case of ordered logit).

Prediction is more complex in the ordered pro-

bit (logit) framework, since there are I possible

predicted probabilities corresponding to the I

possible values of the response variable. The

default option for predict is to compute pre-

dicted probabilities. If I new variable names



are given in the command, they will contain

the probability that i = 1, the probability that

i = 2, and so on.

The marginal effects of an ordered probit (logit)

model are also more complex than their bino-

mial counterparts, since an infinitesimal change

in Xj will not only change the probability within

the current cell (for instance, if κ2 < ŷ∗ ≤ κ3),

but will also make it more likely that the indi-

vidual crosses the threshold into the adjacent

category. Thus if we predict the probabilities

of being in each category at a different point

in the sample space (for instance, for a fam-

ily with three rather than two children) we will

find that those probabilities have changed, and

the larger family may be more likely to choose

the jth response and less likely to choose the

(j − 1)st response. The average marginal ef-

fects may be calculated with margins.



Truncated regression and Tobit models

We turn now to a context where the response

variable is not binary nor necessarily integer,

but subject to truncation. This is a bit trickier,

since a truncated or censored response variable

may not be obviously so. We must fully under-

stand the context in which the data were gen-

erated. Nevertheless, it is quite important that

we identify situations of truncated or censored

response variables. Utilizing these variables as

the dependent variable in a regression equation

without consideration of these qualities will be

misleading.

Truncation

In the case of truncation the sample is drawn

from a subset of the population so that only

certain values are included in the sample. We

lack observations on both the response variable



and explanatory variables. For instance, we

might have a sample of individuals who have a

high school diploma, some college experience,

or one or more college degrees. The sam-

ple has been generated by interviewing those

who completed high school. This is a trun-

cated sample, relative to the population, in

that it excludes all individuals who have not

completed high school. The characteristics of

those excluded individuals are not likely to be

the same as those in our sample. For instance,

we might expect that average or median in-

come of dropouts is lower than that of gradu-

ates.

The effect of truncating the distribution of a

random variable is clear. The expected value or

mean of the truncated random variable moves

away from the truncation point and the vari-

ance is reduced. Descriptive statistics on the

level of education in our sample should make



that clear: with the minimum years of edu-
cation set to 12, the mean education level is
higher than it would be if high school dropouts
were included, and the variance will be smaller.
In the subpopulation defined by a truncated
sample, we have no information about the char-
acteristics of those who were excluded. For
instance, we do not know whether the propor-
tion of minority high school dropouts exceeds
the proportion of minorities in the population.

A sample from this truncated population can-
not be used to make inferences about the en-
tire population without correction for the fact
that those excluded individuals are not ran-
domly selected from the population at large.
While it might appear that we could use these
truncated data to make inferences about the
subpopulation, we cannot even do that. A re-
gression estimated from the subpopulation will
yield coefficients that are biased toward zero—
or attenuated—as well as an estimate of σ2

u



that is biased downward.attenuation If we are

dealing with a truncated Normal distribution,

where y = Xβ+u is only observed if it exceeds

τ , we may define:

αi = (τ −Xiβ)/σu

λ(αi) =
φ(αi)

(1−Φ(αi))
(9)

where σu is the standard error of the untrun-

cated disturbance u, φ(·) is the Normal density

function (PDF ) and Φ(·) is the Normal CDF .

The expression λ(αi) is termed the inverse Mills

ratio, or IMR.

If a regression is estimated from the truncated

sample, we find that

[yi|yi > τ,Xi] = Xiβ + σuλ(αi) + ui (10)

These regression estimates suffer from the ex-

clusion of the term λ(αi). This regression is

misspecified, and the effect of that misspeci-

fication will differ across observations, with a



heteroskedastic error term whose variance de-

pends on Xi. To deal with these problems,

we include the IMR as an additional regres-

sor. This allows us to use a truncated sample

to make consistent inferences about the sub-

population.

If we can justify making the assumption that

the regression errors in the population are Nor-

mally distributed, then we can estimate an equa-

tion for a truncated sample with the Stata

command truncreg.Under the assumption of

normality, inferences for the population may

be made from the truncated regression model.

The truncreg option ll(#) is used to indicate

that values of the response variable less than

or equal to # are truncated. We might have

a sample of college students with yearsEduc

truncated from below at 12 years. Upper trun-

cation can be handled by the ul(#) option: for

instance, we may have a sample of individu-

als whose income is recorded up to $200,000.



Both lower and upper truncation can be spec-

ified by combining the options.

The coefficient estimates and marginal effects

from truncreg may be used to make inferences

about the entire population, whereas the re-

sults from the misspecified regression model

should not be used for any purpose.

Censoring

Let us now turn to another commonly encoun-

tered issue with the data: censoring. Unlike

truncation, in which the distribution from which

the sample was drawn is a non-randomly se-

lected subpopulation, censoring occurs when a

response variable is set to an arbitrary value

above or below a certain value: the censor-

ing point. In contrast to the truncated case,

we have observations on the explanatory vari-

ables in this sample. The problem of censor-

ing is that we do not have observations on the



response variable for certain individuals. For

instance, we may have full demographic infor-

mation on a set of individuals, but only observe

the number of hours worked per week for those

who are employed.

As another example of a censored variable,

consider that the numeric response to the ques-

tion “How much did you spend on a new car

last year?” may be zero for many individuals,

but that should be considered as the expres-

sion of their choice not to buy a car. Such

a censored response variable should be consid-

ered as being generated by a mixture of dis-

tributions: the binary choice to purchase a car

or not, and the continuous response of how

much to spend conditional on choosing to pur-

chase. Although it would appear that the vari-

able caroutlay could be used as the dependent

variable in a regression, it should not be em-

ployed in that manner, since it is generated



by a censored distribution. Wooldridge (2002)
argues that this should not be considered an
issue of censoring, but rather a corner solu-
tion problem: the zero outcome is observed
with positive probability, and reflects the “cor-
ner solution” to the utility maximization prob-
lem where certain respondents will choose not
to take the action. But as he acknowledges,
the literature has already firmly ensconced this
problem as that of censoring. (p. 518)

A solution to this problem was first proposed
by Tobin (1958) as the censored regression
model; it became known as “Tobin’s probit” or
the tobit model.† The model can be expressed
in terms of a latent variable:

y∗i = Xβ + u

yi = 0 if y∗i ≤ 0 (11)

yi = y∗i if y∗i > 0
†The term “censored regression” is now more com-
monly used for a generalization of the Tobit model
in which the censoring values may vary from observa-
tion to observation. See the documentation for Stata’s
cnreg command.



As in the prior example, our variable yi con-

tains either zeros for non-purchasers or a dollar

amount for those who chose to buy a car last

year. The model combines aspects of the bino-

mial probit for the distinction of yi = 0 versus

yi > 0 and the regression model for [yi|yi > 0].

Of course, we could collapse all positive obser-

vations on yi and treat this as a binomial probit

(or logit) estimation problem, but that would

discard the information on the dollar amounts

spent by purchasers. Likewise, we could throw

away the yi = 0 observations, but we would

then be left with a truncated distribution, with

the various problems that creates.‡ To take

account of all of the information in yi properly,

we must estimate the model with the tobit

estimation method, which employs maximum

‡The regression coefficients estimated from the posi-
tive y observations will be attenuated relative to the
tobit coefficients, with the degree of bias toward zero
increasing in the proportion of “limit observations” in
the sample.



likelihood to combine the probit and regres-

sion components of the log-likelihood function.

The log-likelihood of a given observation may

be expressed as:

`i(β, σu) = I[yi = 0] log [1−Ψ(Xiβ/σu)] +

I[yi > 0] logψ [(yi −Xiβ)/σu]

− log(σ2
u)/2 (12)

where I[·] = 1 if its argument is nonzero, and

zero otherwise. The likelihood function, sum-

ming `i over the sample, may be written as the

sum of the probit likelihood for those observa-

tions with yi = 0 and the regression likelihood

for those observations with yi > 0.

Tobit models may be defined with a threshold

other than zero. Censoring from below may be

specified at any point on the y scale with the

ll(#) option for left censoring. Similarly, the

standard tobit formulation may employ an up-

per threshold (censoring from above, or right



censoring) using the ul(#) option to specify

the upper limit. This form of censoring, also

known as top coding, will occur with a vari-

able that takes on a value of “$x or more”:

for instance, the answer to a question about

income, where the respondent is asked to in-

dicate whether their income was greater than

$200,000 last year in lieu of the exact amount.

Stata’s tobit also supports the two-limit tobit

model where observations on y are censored

from both left and right by specifying both the

ll(#) and ul(#) options.

Even in the case of a single censoring point,

predictions from the tobit model are quite com-

plex, since one may want to calculate the regression-

like xb with predict, but could also compute

the predicted probability that [y|X] falls within

a particular interval (which may be open-ended

on left or right).This may be specified with the

pr(a,b) option, where arguments a, b specify



the limits of the interval; the missing value

code (.) is taken to mean infinity (of either

sign). Another predict option, e(a,b), cal-

culates the expectation y = EXβ + u condi-

tional on [y|X] being in the a, b interval. Last,

the ystar(a,b) option computes the prediction

from Equation (11): a censored prediction,

where the threshold is taken into account.

The marginal effects of the tobit model are

also quite complex. The estimated coefficients

are the marginal effects of a change in Xj on

y∗ the unobservable latent variable:

∂E(y∗|Xj)
∂Xj

= βj (13)

but that is not very useful. If instead we eval-

uate the effect on the observable y, we find

that:

∂E(y|Xj)
∂Xj

= βj × Pr[a < y∗i < b] (14)



where a, b are defined as above for predict.

For instance, for left-censoring at zero, a =

0, b = +∞. Since that probability is at most

unity (and will be reduced by a larger propor-

tion of censored observations), the marginal

effect of Xj is attenuated from the reported

coefficient toward zero. An increase in an ex-

planatory variable with a positive coefficient

will imply that a left-censored individual is less

likely to be censored. Their predicted proba-

bility of a nonzero value will increase. For a

non-censored individual, an increase in Xj will

imply that E[y|y > 0] will increase. So, for

instance, a decrease in the mortgage interest

rate will allow more people to be homebuy-

ers (since many borrowers’ income will qualify

them for a mortgage at lower interest rates),

and allow prequalified homebuyers to purchase

a more expensive home. The marginal ef-

fect captures the combination of those effects.

Since the newly-qualified homebuyers will be



purchasing the cheapest homes, the effect of
the lower interest rate on the average price
at which homes are sold will incorporate both
effects. We expect that it will increase the
average transactions price, but due to attenu-
ation, by a smaller amount than the regression
function component of the model would indi-
cate. The average marginal effects may be
computed with margins.

Since the tobit model has a probit component,
its results are sensitive to the assumption of
homoskedasticity. Robust standard errors are
not available for Stata’s tobit command, al-
though bootstrap or jackknife standard errors
may be computed with the vce option. The
tobit model imposes the constraint that the
same set of factors X determine both whether
an observation is censored (e.g., whether an
individual purchased a car) and the value of a
non–censored observation (how much a pur-
chaser spent on the car). Furthermore, the



marginal effect is constrained to have the same

sign in both parts of the model. A general-

ization of the tobit model, often termed the

Heckit model (after James Heckman) can re-

lax this constraint, and allow different factors

to enter the two parts of the model. This

generalized tobit model can be estimated with

Stata’s heckman command.

Incidental truncation and sample selection mod-

els

In the case of truncation, the sample is drawn

from a subset of the population. It does not

contain observations on the dependent or in-

dependent variables for any other subset of the

population. For example, a truncated sample

might include only individuals with a perma-

nent mailing address, and exclude the home-

less. In the case of incidental truncation, the



sample is representative of the entire popula-

tion, but the observations on the dependent

variable are truncated according to a rule whose

errors are correlated with the errors from the

equation of interest. We do not observe y be-

cause of the outcome of some other variable

which generates the selection indicator, si.

To understand the issue of sample selection,

consider a population model in which the rela-

tionship between y and a set of explanatory

factors X can be written as a linear model

with additive error u. That error is assumed to

satisfy the zero conditional mean assumption.

Now consider that we observe only some of the

observations on y—for whatever reason—and

that indicator variable si equals 1 when we ob-

serve both y and X and zero otherwise. If we

merely run a regression on the observations

yi = xiβ + ui (15)



on the full sample, those observations with

missing values of yi (or any of the elements

of Xi) will be dropped from the analysis. We

can rewrite this regression as

siyi = sixiβ + siui (16)

The OLS estimator b of Equation (16) will

yield the same estimates as that of Equation

(15). They will be unbiased and consistent if

the error term siui has zero mean and is un-

correlated with each element of xi. For the

population, these conditions can be written

E(su) = 0

E[(sxj)(su)] = E(sxju) = 0 (17)

because s2 = s. This condition differs from

that of a standard regression equation (without

selection), where the corresponding zero con-

ditional mean assumption only requires that

E(xju) = 0. In the presence of selection, the

error process u must be uncorrelated with sxj.



Now let us consider the source of the sample

selection indicator si. If that indicator is purely

a function of the explanatory variables in X,

then we have the case of exogenous sample

selection. If the explanatory variables in X are

uncorrelated with u, and si is a function of Xs,

then it too will be uncorrelated with u, as will

the product sxj. OLS regression estimated on

a subset will yield unbiased and consistent es-

timates. For instance, if gender is one of the

explanatory variables, we can estimate sepa-

rate regressions for men and women without

any difficulty. We have selected a subsample

based on observable characteristics: e.g., si
identifies the set of observations for females.

We can also consider selection of a random

subsample. If our full sample is a random sam-

ple from the population, and we use Stata’s

sample command to draw a 10%, 20% or 50%

subsample, estimates from that subsample will



be consistent as long as estimates from the

full sample are consistent. In this case, si is

set randomly.

If si is set by a rule, such as si = 1 if yi ≤ c, then

as we considered in discussing truncation OLS

estimates will be biased and inconsistent. We

can rewrite the rule as si = 1 if ui ≤ (c− xiβ),

which makes it clear that si must be corre-

lated with ui. As shown above, we must use

the truncated regression model to derive con-

sistent estimates.

The case of incidental truncation refers to the

notion that we will observe yi based not on its

value, but rather on the observed outcome of

another variable. For instance, we observe an

hourly wage when the individual participates in

the labor force. We can imagine estimating a

binomial probit or logit model that predicts the

individual’s probability of participation. In this



circumstance, si is set to zero or one based on

the factors underlying that participation deci-

sion:

y = Xβ + u (18)

s = I[Zγ + v ≥ 0] (19)

where we assume that the explanatory factors

in X satisfy the zero conditional mean assump-

tion E[Xu] = 0. The I[·] function equals 1 if

its argument is positive, zero otherwise. We

observe yi if si = 1. The selection function

contains a set of explanatory factors Z, which

must be a superset of X. For identification

of the model, Z contains all X but must also

contain additional factors that do not appear

in X. The error term in the selection equa-

tion, v, is assumed to have a zero conditional

mean: E[Zv] = 0, which implies that it is also

independent of X. We assume that v follows

a standard Normal distribution.



The problem of incidental truncation arises when

there is a nonzero correlation between u and

v. If both of these processes are Normally dis-

tributed with zero means, the conditional ex-

pectation E[u|v] = ρv where ρ is the correlation

of u and v. From Equation (18),

E[y|Z, v] = Xβ + ρv (20)

We cannot observe v, but we note that s is

related to v by Equation (19). Equation (20)

then becomes

E[Y |Z, s] = Xβ + ρE[v|γ, s] (21)

The conditional expectation E[v|γ, s] for si =

1—the case of observability—is merely λ, the

inverse Mills ratio defined above. Therefore we

must augment equation (18) with that term:

E[y|Z, s = 1] = Xβ + ρλ(Zγ) (22)

If ρ 6= 0, OLS estimates from the incidentally

truncated sample—for example, those partici-

pating in the labor force—will not consistently



estimate β unless the IMR term is included.

Conversely, if ρ = 0, that OLS regression will

yield consistent estimates because it is the cor-

relation of u and v which gives rise to the prob-

lem.

The IMR term includes the unknown popula-

tion parameters γ, which must be estimated

by a binomial probit model

Pr(s = 1|Z) = Φ(Zγ) (23)

from the entire sample. With estimates of γ,

we can compute the IMR term for each obser-

vation for which yi is observed (si = 1) and es-

timate the model of Equation (22). This two-

step procedure, based on the work of Heck-

man (1976) is often termed the Heckit model.

Alternatively, a full maximum likelihood proce-

dure can be used to jointly estimate the re-

gression and probit equations.



The Heckman selection model in this context

is driven by the notion that some of the Z

factors for an individual are different from the

factors in X. For instance, in a wage equation,

the number of pre-school children in the family

is likely to influence whether a woman partici-

pates in the labor force but should not be taken

into account in the wage determination equa-

tion: it appears in Z but not X. Such factors

serve to identify the model. Other factors are

likely to appear in both equations. A woman’s

level of education and years of experience in

the labor force are likely to influence her de-

cision to participate as well as the equilibrium

wage that she will earn in the labor market.

Stata’s heckman command will estimate the full

maximum likelihood version of the Heckit model

with the syntax

heckman depvar varlist [if] [in], select(varlist2)



where varlist specifies the regressors in X and

varlist2 specifies the list of Z factors expected

to determine the selection of an observation

as observable. Unlike the tobit context, where

the depvar is recorded at a threshold value for

the censored observations (e.g., zero for those

who did not purchase a car), the depvar should

be coded as missing (.) for those observations

which are not selected.§ The model is esti-

mated over the entire sample, and an estimate

of the crucial correlation ρ is provided, along

with a test of the hypothesis that ρ = 0. If

that hypothesis is rejected, a regression of the

observed depvar on varlist will produce incon-

sistent estimates of β.¶

§An alternative syntax of heckman allows for a second
dependent variable: an indicator that signals which ob-
servations of depvar are observed.
¶The output produces an estimate of /athrho, the hy-
perbolic arctangent of ρ. That parameter is entered
in the log-likelihood function to enforce the constraint
that −1 ≤ ρ ≤ 1. The point and interval estimates of
ρ are derived from the inverse transformation.



The heckman command is also capable of gen-

erating the two-step estimator of the selec-

tion model (Heckman, 1979) by specifying the

twostep option. This model is essentially the

regression of Equation (10) in which the in-

verse Mills ratio (IMR) has been estimated as

the prediction of a binomial probit (Equation

(19)) in the first step and used as a regressor

in the second step. A significant coefficient of

the IMR, denoted lambda, indicates that the

selection model must be employed to avoid in-

consistency. The twostep approach, compu-

tationally less burdensome than the full max-

imum likelihood approach used by default in

heckman, may be preferable in complex selec-

tion models.

Bivariate probit and probit with selection

Another example of a limited dependent vari-

able framework in which a correlation of equa-

tions’ disturbances plays an important role is



the bivariate probit model. In its simplest form,

the model may be written as:

y∗1 = X1β1 + u1

y∗2 = X2β2 + u2

E[u1|X1, X2] = E[u2|X1, X2] = 0

var[u1|X1, X2] = var[u1|X1, X2] = 1

cov[u1, u2|X1, X2] = ρ.

The observable counterparts to the two latent

variables y∗1, y
∗
2 are y1, y2. These variables are

observed as 1 if their respective latent variables

are positive, and zero otherwise.

One formulation of this model, termed the

seemingly unrelated bivariate probit model in

biprobit, is similar to the seemingly unrelated

regression model. As in the regression context,

it may be advantageous to view the two pro-

bit equations as a system and estimate them

jointly if ρ 6= 0, but it will not affect the consis-

tency of individual probit equations’ estimates.



However, one common formulation of the bi-

variate probit model deserves consideration here

because it is similar to the selection model de-

scribed above. Consider a two-stage process

in which the second equation is observed con-

ditional on the outcome of the first. For exam-

ple, some fraction of patients diagnosed with

circulatory problems undergo multiple bypass

surgery (y1 = 1). For each of those patients,

we record whether they died within one year of

the surgery (y2 = 1). The y2 variable is only

available in this context for those patients who

are post-operative. We do not have records of

mortality among those who chose other forms

of treatment. In this context, the reliance of

the second equation on the first is a issue of

partial observability, and if ρ 6= 0 it will be nec-

essary to take both equations’ factors into ac-

count to generate consistent estimates. That

correlation of errors may be very likely in that

unexpected health problems that caused the



physician to recommend bypass surgery may

recur and cause the patient’s demise.

As another example, consider a bank deciding

to extend credit to a small business. Their de-

cision to offer a loan can be viewed as y1 = 1.

Conditional on that outcome, the borrower will

or will not default on the loan within the follow-

ing year, where a default is recorded as y2 = 1.

Those potential borrowers who were denied

cannot be observed defaulting because they

did not receive a loan in the first stage. Again,

the disturbances impinging upon the loan offer

decision may well be correlated (in this case

negatively) with the disturbances that affect

the likelihood of default.

Stata can estimate these two types of bivari-

ate probit model with the biprobit command.

The seemingly unrelated bivariate probit model

allows X1 6= X2, but the alternate form that



we consider here only allows a single varlist of
factors that enter both equations. In the med-
ical example, this might include the patient’s
body mass index (a measure of obesity), indi-
cators of alcohol and tobacco use, and age—all
of which might both affect the recommended
treatment and the one-year survival rate. With
the partial option, we specify that the partial
observability model of Poirier, 1981 is to be
estimated.

Binomial probit with selection

A closely related model to the bivariate probit
with partial observability is the binomial probit
with selection model. This formulation, first
presented by Van de Ven and Van Praag has
the same basic setup as Equation (24) above:
the latent variable y∗1 depends on factors X,
and the binary outcome y1 = 1 arises when
y∗1 > 0. However, y1j is only observed when

y2j = (X2γ + u2j > 0) (24)



that is, when the selection equation gener-

ates a value of 1. This could be viewed, in

the earlier example, as y2 indicating whether

the patient underwent bypass surgery. We ob-

serve the following year’s health outcome only

for those patients who had the surgical proce-

dure. As in Equation (24), there is a poten-

tial correlation (ρ) between the errors of the

two equations. If that correlation is nonzero

estimates of the y1 equation will be biased un-

less the selection is taken into account. In

this example, that suggests that focusing only

on the patients who underwent surgery (for

whom y2 = 1) and studying the factors that

contributed to survival will not be appropri-

ate if the selection process is nonrandom. In

the medical example, it is surely likely that

selection is nonrandom in that those patients

with less serious circulatory problems are not

as likely to undergo heart surgery.



In the second example, we consider small busi-

ness borrowers’ likelihood of getting a loan,

and for successful borrowers, whether they de-

faulted on the loan. We can only observe a

default if they were selected by the bank to

receive a loan (y2 = 1). Conditional on re-

ceiving a loan, they did or did not fulfill their

obligations as recorded in y1. If we only fo-

cus on loan recipients and whether or not they

defaulted we are ignoring the selection issue.

Presumably a well-managed bank is not choos-

ing among loan applicants at random. Both

deterministic and random factors influencing

the extension of credit and borrowers’ subse-

quent performance are likely to be correlated.

Unlike the bivariate probit with partial observ-

ability, the probit with sample selection explic-

itly considers X1 6= X2. The factors influenc-

ing the granting of credit and the borrowers’

performance must differ in order to identify the



model. Stata’s heckprob command has a syn-

tax similar to heckman, with a varlist of the fac-

tors in X1 and a select(varlist2) option speci-

fying the explanatory factors driving the selec-

tion outcome.


