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Chapters 10, 11, 12:

Generalized Least Squares, Heteroskedas-

ticity, Serial Correlation

The generalized linear regression model

The generalized linear regression model may

be stated as:

y = Xβ + ε

E[ε|X] = 0

E[εε′|X] = σ2Ω = Σ

where Ω is a positive definite matrix. This al-

lows us to consider data generating processes

where the assumption that Ω = I does not

hold. Two special cases are of interest: pure



heteroskedasticity, where Ω is a diagonal ma-
trix, and some form of serial correlation, in
which

Ω =


1 ρ1 . . . ρn−1
ρ1 1 . . . ρn−2

...
ρn−1 ρn−2 . . . 1



where the ρ parameters represent the correla-
tions between successive elements of the er-
ror process. In an ordinary cross-sectional or
time-series data set, we might expect to en-
counter one of these violations of the classical
assumptions on E[εε′|X]. In a pooled cross-
section time-series data set, or the special case
of that data structure known as panel (longi-
tudinal) data, we might expect to encounter
both problems.

We consider first the damage done to the OLS
estimator by this violation of classical assump-
tions, and an approach that could be used



to repair that damage. Since that approach

will often be burdensome, we consider an al-

ternative strategy: the robustification of least

squares estimates to deal with a Σ of unknown

form.

OLS and IV in the GLM context

In estimating the linear regression model un-

der the full set of classical assumptions, we

found that OLS estimates are best linear un-

biased (BLUE), consistent and asymptotically

normally distributed (CAN), and under the as-

sumption of normally distributed errors, asymp-

totically efficient. Which of these desirable

properties hold up if Ω 6= I?

Least squares will retain some of its desirable

properties in the generalized linear regression

model: it will still be unbiased, consistent, and

asymptotically normally distributed. However,



it will no longer be efficient, and the usual in-

ference procedures are no longer appropriate,

as the interval estimates are inconsistent.

The least squares estimator, given X ⊥ ε, will

be unbiased, with sampling variance (condi-

tioned on X of:

V ar[b|X] = E[(X ′X)−1X ′εε′X(X ′X)−1]

= σ2(X ′X)−1(X ′ΩX)(X ′X)−1

The inconsistency of the least squares interval

estimates arises here: this expression for the

sampling variance of b does not equal that ap-

plicable for OLS (which is only the first term

of this expression). Not only is the wrong ma-

trix being used, but there is no guarantee that

an estimate of σ2 will be unbiased. Gener-

ally we cannot state any relation between the

respective elements of the two covariance ma-

trices; the OLS standard errors may be larger

or smaller than those computed from the gen-

eralized linear regression model.



Robust estimation of asymptotic covariance ma-

trices

If we know Ω (up to a scalar), then as we will

see an estimator may be defined to make use

of that information and circumvent the diffi-

culties of OLS. In many cases, even though

we must generate an estimate of Ω̂, use of

that estimate will be preferable to ignoring the

issue and using OLS. But in many cases we

may not be well informed about the nature of

Ω, and deriving an estimator for the asymp-

totic covariance matrix of b may be the best

way to proceed.

If Ω was known, the appropriate estimator of

that asymptotic covariance matrix would be

V [b] =
1

n

[
1

n
X ′X

]−1 [1

n
X ′(σ2Ω)X

] [
1

n
X ′X

]−1

in which the only unknown element is σ2Ω = Σ

(Ω is only known up to a scalar multiple).



It might seem that to estimate 1
nX
′ΣX, an ob-

ject containing n(n + 1)/2 unknown parame-

ters, might be a hopeless task using a sample

of size n. But what is needed is an estimator

of

plim Q = plim
1

n

n∑
i=1

n∑
j=1

σijxix
′
j

where the matrix Q, which is a matrix of sums

of squares and cross products, has K(K+1)/2

unknown elements. Thus, the approach to es-

timation of the asymptotic covariance matrix

will be to work with X and e, the least squares

residuals, which are consistent estimators of

their population counterparts given the consis-

tency of b, from which they are computed.

Consider the case of pure heteroskedasticity,

where we allow Eεiε
′
i = σ2

i . That assumption

involves n unknown variances which cannot be

estimated from samples of size 1. But in this



case the formula for Q, given that Σ is a diag-
onal matrix, simplifies to:

Q =
1

n

n∑
i=1

σixix
′
i

White (1980) shows that under very general
conditions the feasible estimator

S0 =
1

n

n∑
i=1

e2
i xix

′
i

has a plim equal to that of Q. Note that Q is
a weighted sum of the outer products of the
rows of X. We seek not to estimate Q, but
to find a function of the sample data that will
approximate Q arbitrarily well in the limit. If Q
converges to a finite, positive definite matrix,
we seek a function of the sample data that will
converge to this same matrix. The matrix S0
above has been shown to possess that prop-
erty of convergence, and is thus the basis for
White’s heteroskedasticity–consistent estima-
tor of the asymptotic covariance matrix:

Est. Asy. Var.[b] = n(X ′X)−1S0(X ′X)−1



which gives us an interval estimate that is ro-

bust to unknown forms of heteroskedasticity.

It is this estimator that is utilized in any com-

puter program that generates “robust standard

errors”; for instance, the robust option on a

Stata estimation command generates the stan-

dard errors via White’s formula.

However, the deviation of Σ from I may involve

more than pure heteroskedasticity; Σ need not

be a diagonal matrix. What if we also must

take serial correlation of the errors into ac-

count? The natural counterpart to White’s

formula would be

Q̂ =
1

n

n∑
i=1

n∑
j=1

eiejxix
′
j

but as it happens this estimator has two prob-

lems. Since this quantity is 1
n times a sum

of n2 terms, it is difficult to establish that it

will converge to anything, let alone Q. To ob-

tain convergence, the terms involving products



of residuals—which are estimates of the auto-
correlations between εi and εj—must decline
as the distance between i and j grows. This
unweighted sum will not meet that condition.
If we weight the terms in this summation, and
the weights decline sufficiently rapidly, then the
sums of these n2 terms can indeed converge to
constant values as n→∞. There is still a prac-
tical problem, however, in that even a weighted
sum may not yield a positive definite matrix,
since the sample autocorrelations contain sam-
pling error. The matrix autocovariogram must
be positive definite, but estimates of it may
not be. Thus, some sort of kernel estimator is
needed to ensure that the resulting matrix will
be positive definite.

The first solution to this issue in the economet-
rics literature was posed by Newey and West
(1987), who proposed the estimator

Q̂ = S0 +
1

n

L∑
l=1

n∑
t=l+1

wletet−l(xtx
′
t−l + xt−lx

′
t)



which takes a finite number L of the sample
autocorrelations into account, employing the
Bartlett kernel estimator

wl = 1−
l

L+ 1

to generate the weights. Newey and West have
shown that this estimator guarantees that Q̂

will be positive definite. The estimator is said
to be “HAC”: heteroskedasticity- and
autocorrelation–consistent, allowing for any de-
viation of Σ from I up to Lth order autocor-
relation. The user must specify her choice of
L, which should be large enough to encompass
any likely serial correlation in the error process.
One rule of thumb that has been used is to
choose L = 4

√
n. This estimator is that avail-

able in the Stata command newey, which may
be used as an alternative to regress for OLS
estimation with HAC standard errors.

Two issues remain with the HAC estimator of
the asymptotic covariance matrix: first, al-
though the Newey–West estimator is widely



used, there is no particular justification for the

use of the Bartlett kernel. There are a number

of alternative kernel estimators that may be

employed, and some may have better proper-

ties in specific instances. The only requirement

is that the kernel deliver a positive definite co-

variance matrix.

Second, if there is no reason to question the

assumption of homoskedasticity, it may be at-

tractive to deal with serial correlation under

that assumption. One may want the “AC”

without the “H”. The standard Newey–West

procedure does not allow this.

The ivreg2 routine can estimate robust, AC,

and HAC standard errors for either OLS, IV,

or IV-GMM models. It provides a choice of a

number of alternative kernels.



Efficient estimation via generalized least squares

Efficient estimation of β requires knowledge

of Ω. Consider the case where that matrix is

known, positive definite and symmetric. It may

be factored as Ω = CΛC′ where the columns

of C are the eigenvectors of Ω and Λ = diag(λ)

where λ is the vector of eigenvalues of Ω. Let

T = CΛ1/2, such that Ω = TT ′. Also, let P ′ =
CΛ−1/2, such that Ω−1 = P ′P . Thus we can

premultiply the regression model y = Xβ + ε

by P , Py = PXβ + Pε, and E[Pεε′P ′] = σ2I.

Since Ω is known, the observed data y,X may

be transformed by P , and the resulting estima-

tor is merely OLS on the transformed model.

The efficient estimator of β, given the Gauss–

Markov theorem, is thus the generalized least

squares or “Aitken estimator”:

β̂ = (X ′P ′PX)−1(X ′P ′Py)

= (X ′Ω−1X)−1(X ′Ω−1y)



This may be viewed as a case of weighted

least squares, where OLS uses the improper

weighting matrix I, rather than the appropri-

ate weights of Ω−1. The GLS estimator is the

minimum variance linear unbiased estimator of

the generalized least squares model, of which

OLS is a special case. The residuals from this

model are based on the transformed data, so

that the GLS estimate of σ2 is

σ̂2 =
(y −Xβ̂)′Ω−1(y −Xβ̂)

n−K
There is no precise counterpart to R2 in the

GLS context. For instance, we could consider

the R2 of the OLS model estimated above,

but that model need not have a constant term.

In any case, that model reflects how well the

parameters fit the transformed data, not the

original data of interest. We might rather con-

sider the GLS parameters applied to the origi-

nal data, which can be used to generate ŷ and

a residual series in that metric. However, one



must note that the objective of GLS is to min-

imize the sum of squares of the transformed

residuals (that is, those based on the trans-

formed data), and that does not necessarily

imply that the sum of squared residuals based

on the original data will be minimized in the

process.

Feasible generalized least squares

If we relax the assumption that Ω is known, we

confront the issue of how to estimate it. Since

it contains n(n+1)/2 distinct elements, it can-

not be estimated from n observations. We

must impose constraints to reduce the number

of unknown parameters, as θ = θ(Ω), where

the number of elements in θ is much less than

n. In the time series context, for instance,

a specification of AR(1) will reduce the num-

ber of unknown parameters to one: ρ in εt =



ρεt−1 + vt, which causes all off–diagonal ele-

ments of Ω to be powers of ρ. Likewise, one

can specify a model of pure heteroskedasticity

which only contains one additional parameter,

such as σ2
i = σ2z

γ
i where zi is some observ-

able magnitude (such as the size of a firm, or

the income of a household) and γ is to be esti-

mated. In either case, we may consider that we

have a consistent estimator of θ (ρ in the for-

mer case, γ in the latter). Then feasible GLS

estimation will involve Ω̂ = Ω(θ̂) rather than

the true Ω. What will be the consequences of

this replacement?

If the plim of the elements of θ̂ equal the re-

spective elements of θ, then using Ω̂ is asymp-

totically equivalent to using Ω itself. The fea-

sible GLS estimator is then

ˆ̂β = (X ′Ω̂−1X)−1(X ′Ω̂−1y)

and we need not have an efficient estimator

of θ to ensure that this feasible estimator of



β is asymptotically efficient; we only need a
consistent estimator of θ. Except for the sim-
plest textbook cases, the finite–sample prop-
erties and exact distributions of feasible GLS
(FGLS) estimators are unknown. With nor-
mally distributed disturbances, the FGLS esti-
mator is also the maximum likelihood estima-
tor of β. An important result due to Ober-
hofer and Kmenta (1974) is that if β and θ

have no parameters in common, a “back–and–
forth” approach which estimates first one, then
the other of those vectors will yield the MLE
of estimating them jointly; and that there is
in that case no gain in asymptotic efficiency
in knowing Ω over consistently estimating its
contents.

Heteroskedasticity

Heteroskedasticity appears in many guises in
economic and financial data, in both cross-
section and time-series contexts. In the for-
mer, we often find that disturbance variances



are related to some measure of size: total as-

sets or total sales of the firm, income of the

household, etc. Alternatively, we may have a

dataset in which we may reasonably assume

that the disturbances are homoskedastic within

groups of observations, but potentially het-

eroskedastic between groups. As a third po-

tential cause for heteroskedasticity, consider

the use of grouped data, in which each obser-

vation is the average of microdata (e.g., state-

level data for the US, where the states have

widely differing populations). Since means com-

puted from larger samples are more accurate,

the disturbance variance for each observation

is known up to a factor of proportionality.

We often find heteroskedasticity in time-series

data: particularly a phenomenon known as volatil-

ity clustering, which appears in high-frequency

data from financial markets. We will not dis-

cuss this context of (conditional) heteroskedas-

ticity at length, but you should be aware that



the widespread use of ARCH and GARCH mod-
els for high-frequency time-series data is based
on the notion that the errors in these contexts
are conditionally heteroskedastic.

What happens if we use OLS in a heteroskedas-
tic context? The OLS estimator b is still un-
biased, consistent, and asymptotically normal,
but its covariance matrix is based on the wrong
formula. Thus, the interval estimators are bi-
ased (although we can show that the plim of
s2 is σ2 as long as we use a consistent estima-
tor of b). The greater is the dispersion of ωi
(the diagonal element of Ω for the ith observa-
tion) the greater the degree of inefficiency of
the OLS estimator, and the greater the gain
to using GLS (if we have the opportunity to
do so). If the ωi are correlated with any of the
variables in the model, the difference between
the OLS and GLS covariance matrices will be
sizable, since the difference ∆ depends on

1

n

N∑
i=1

(1− ωi)xix′i



where xi is the ith row of the X matrix.

In the case of unknown heteroskedasticity, we
will probably employ the White (Huber, sand-
wich) estimator of the covariance matrix that
is implied by the “robust” option of Stata. If
we have knowledge of Ω, we should of course
use that information. If σ2

i = σ2ωi, then we
should use the weighted least squares (WLS)
estimator in which each observation is weighted
by 1√

ωi
: that is, the P matrix is diag( 1√

ωi
).

Observations with smaller variances receive a
larger weight in the computation of the sums,
and therefore have greater weight in comput-
ing the weighted least squares estimates.

Consider the case where the firm-specific error
variance is assumed to be proportional to firm
size, so that ωi = x2

ik, where xk is the variable
measuring size. Then the transformed regres-
sion model involves dividing through the equa-
tion by xik. This can be achieved in Stata by



creating a variable that is proportional to the

observation’s error variance, e.g., gen size2 =

size*size, and then specifying to Stata that

this variable is to be used in the expression

for the analytical weight (aw) in the regression:

e.g. regress q l k [aw=1/size2], in which the

analytical weight is assumed to be (propor-

tional to) the inverse of the observation vari-

ance. Note that the way in which you specify

WLS differs from package to package; in some

programs, you would give size2 itself as the

weight!

What about the case in which we have grouped

data, representing differing numbers of micro-

data records? Then we have a known Ω, de-

pending on the n underlying each observation.

Each observation in our data stands for an

integer number of records in the population.

Say that we have, for each U.S. state, the

population, recorded in variable pop. Then



we might say regress saving income aw=pop],

in which we specify as an analytical weight the

number of observations in the population cor-

responding to each observation in the sample.

What if we do not have knowledge of Ω, and

must make some assumptions on its contents?

Then we face the issue: how good is our infor-

mation (or ability to estimate from OLS), and

would we be better off using an estimated Ω,

or using a robust estimation technique which

makes no assumptions on its contents? There

is the clear possibility that using faulty infor-

mation on Ω, although it may dominate OLS,

may be worse than using a robust covariance

matrix. And the most egregious (but not un-

common) error, weighting “upside down”, will

exacerbate the heteroskedasticity rather than

removing it!



Estimation of an unknown Ω

The estimation of Ω proceeds from the use of

OLS to obtain estimates of σ2
i from the least

squares residuals. The OLS residuals, being

functions of the point estimates, are consis-

tent, even though OLS is not efficient in this

context. They may be used to estimate the

variances associated with groups of observa-

tions (in which some sort of groupwise het-

eroskedasticity is to be modeled) or the vari-

ance of individual observations as a function

of a set of auxiliary variables z via a regres-

sion of the squared residuals on those vari-

ables. In this latter case, one may want to

consider reformulating the model by using the

information in z: for instance, if it appears that

the residuals’ variances are related to (some

power of) size, the regression model might be

scaled by the size variable. The common use

of per capita measures, logarithmic functional



forms, and ratios of level variables may be con-

sidered as specifications designed to mitigate

problems of heteroskedasticity that would ap-

pear in models containing level variables.

Testing for heteroskedasticity

The Breusch–Pagan/Godfrey/Cook–Weisberg

and White/Koenker statistics are standard tests

of the presence of heteroskedasticity in an OLS

regression. The principle is to test for a rela-

tionship between the residuals of the regres-

sion and p indicator variables that are hypoth-

esized to be related to the heteroskedasticity.

Breusch and Pagan (1979), Godfrey (1978)

and Cook and Weisberg (1983) separately de-

rived the same test statistic. This statistic is

distributed as χ2 with p degrees of freedom

under the null of no heteroskedasticity, and

under the maintained hypothesis that the er-

ror of the regression is normally distributed.



Koenker (1981) noted that the power of this

test is very sensitive to the normality assump-

tion, and presented a version of the test that

relaxed this assumption. Koenker’s test statis-

tic, also distributed as χ2
p under the null, is eas-

ily obtained as nR2
c , where R2

c is the centered

R2 from an auxiliary regression of the squared

residuals from the original regression on the

indicator variables. When the indicator vari-

ables are the regressors of the original equa-

tion, their squares and their cross-products,

Koenker’s test is identical to White’s (1980)

nR2
c general test for heteroskedasticity. These

tests are available in Stata, following estima-

tion with regress, using ivhettest as well as

via estat hettest and whitetst.

As Pagan and Hall (1983) point out, the above

tests will be valid tests for heteroskedasticity

in an IV regression only if heteroskedasticity is

present in that equation and nowhere else in



the system. The other structural equations in

the system (corresponding to the endogenous

regressors) must also be homoskedastic, even

though they are not being explicitly estimated.

Pagan and Hall derive a test which relaxes this

requirement. Under the null of homoskedastic-

ity in the IV regression, the Pagan–Hall statis-

tic is distributed as χ2
p, irrespective of the pres-

ence of heteroskedasticity elsewhere in the sys-

tem. A more general form of this test was sep-

arately proposed by (White (1982). Our imple-

mentation is of the simpler Pagan–Hall statis-

tic, available with the command ivhettest af-

ter estimation by ivreg or ivreg2.

Let Ψ be the n × p matrix of indicator vari-

ables hypothesized to be related to the het-

eroskedasticity in the equation, with typical

row Ψi. These indicator variables must be ex-

ogenous, typically either instruments or func-

tions of the instruments. Common choices

would be:



1. The levels only of the instruments Z (ex-

cluding the constant). This is available in

ivhettest by specifying the ivlev option,

and is the default option.

2. The levels and squares of the instruments

Z, available as the ivsq option.

3. The levels, squares, and cross-products of

the instruments Z (excluding the constant),

as in the White (1980) test. This is avail-

able as the ivcp option.

4. The “fitted value” of the dependent vari-

able. This is not the usual fitted value of

the dependent variable, Xβ̂. It is, rather,

X̂β̂, i.e., the prediction based on the IV

estimator β̂, the exogenous regressors Z2,



and the fitted values of the endogenous re-

gressors X̂1. This is available in ivhettest

by specifying the fitlev option.

5. The “fitted value” of the dependent vari-

able and its square (fitsq option).

6. A user–defined set of indicator variables

may also be provided for ivhettest.

The trade-off in the choice of indicator vari-

ables is that a smaller set of indicator variables

will conserve degrees of freedom, at the cost

of being unable to detect heteroskedasticity in

certain directions.



Let

Ψ = 1
n

∑n
i=1 Ψi dimension = n× p

D̂ ≡ 1
n

∑n
i=1 Ψ′i(û

2
i − σ̂

2) dimension = n× 1

Γ̂ = 1
n

∑n
i=1(Ψi − Ψ̂)′Xiûi dimension = p×K

µ̂3 = 1
n

∑n
i=1 û

3
i

µ̂4 = 1
n

∑n
i=1 û

4
i

X̂ = PzX
(1)

If ui is homoskedastic and independent of Zi,

then Pagan and Hall (1983) (Theorem 8) show

that under the null of no heteroskedasticity,

nD̂′B̂−1D̂
A∼ χ2

p (2)



where

B̂ = B1 +B2 +B3 +B4

B1 = (µ̂4 − σ̂4)1
n(Ψi −Ψ)′(Ψi −Ψ)

B2 = −2µ̂31
nΨ′X̂(1

nX̂
′X̂)−1Γ̂′

B3 = B′2

B4 = 4σ̂21
nΓ̂′(1

nX̂
′X̂)−1Γ̂

(3)

This is the default statistic produced by ivhettest.
Several special cases are worth noting:

• If the error term is assumed to be normally
distributed, then B2 = B3 = 0 and B1 =
2σ̂41

n(Ψi − Ψ)′(Ψi − Ψ). This is available
from ivhettest with the phnorm option.

• If the rest of the system is assumed to be
homoskedastic, then B2 = B3 = B4 = 0



and the statistic in (2) becomes the White

/ Koenker nR2
c statistic. This is available

from ivhettest with the nr2 option.

• If the rest of the system is assumed to

be homoskedastic and the error term is

assumed to be normally distributed, then

B2 = B3 = B4 = 0, B1 = 2σ̂41
n(Ψi −

Ψ)′(Ψi − Ψ), and the statistic in (2) be-

comes the Breusch–Pagan/Godfrey/Cook–

Weisberg statistic. This is available from

ivhettest with the bpg option.

All of the above statistics will be reported with

the all option. ivhettest can also be em-

ployed after estimation via OLS or HOLS using

regress or ivreg2. In this case the default test

statistic is the White/Koenker nR2
c test.



The Pagan–Hall statistic has not been widely

used in practice, perhaps because it is not a

standard feature of most regression packages.

The Breusch–Pagan (/Cook–Weisberg) statis-

tic can also be computed via Stata user–written

command bpagan or built–in command estat

hettest in the context of a model estimated

with regress. Likewise, White’s general test

(and the variant using fitted values) may be

computed via Stata user–written command whitetst

after regress.

We will not discuss the Goldfeld–Quandt (1965)

test here, since its usefulness is limited relative

to the other tests described above.

Serial correlation

Serial correlation in the errors may arise due

to omitted factors in the regression model, in



which case its diagnosis represents misspecifi-

cation. But there are cases where errors will

be, by construction, serially correlated rather

than independent across observations. Theo-

retical schemes such as partial–adjustment mech-

anisms and adaptive expectations can give rise

to errors which cannot be serially independent.

Thus, we also must consider this sort of de-

viation of Ω from I: one which is generally

more challenging to deal with than is pure het-

eroskedasticity.

As with the latter case, OLS is inefficient, with

unbiased and consistent point estimates, but

an inappropriate covariance matrix of the esti-

mated parameters, rendering hypothesis tests

and confidence intervals invalid.

First, some notation: in applying OLS or GLS

to time-series data, we are usually working with



series that have been determined to be sta-

tionary in some sense. If a time-series process

is covariance stationary or weakly stationary,

it has a constant mean and variance and an

autocorrelation function whose elements only

depend on the temporal displacement. It is

obvious that many series would fail to meet

these conditions, if only for their having a non–

constant mean over time. Nevertheless, if the

variation in the mean can be characterized as

a deterministic trend, that trend can be re-

moved.

There may also be a concern of a time-varying

variance. Since we test regression models for

regime shifts, involving changes in the model’s

parameters over time in response to certain

events, might we not also be concerned about

a changing variance? Naturally, that is a possi-

bility, and in this sense we might consider this

a form of groupwise heteroskedasticity, where

the groups are defined by various time periods.



One way in which a time–series process might

fail to exhibit (covariance) stationarity would

be that its variance might not be finite. Con-

sider the process

yt = β1 + β2yt−1 + εt

Assume that ε ∼ N(0, σ2
ε ) is a stationary pro-

cess. As we assume that it is normally dis-

tributed, it will be strongly stationary, since

its entire distribution is described by these two

moments. Then the mean of this process is a

function of the lag coefficient:

E[y] =

(
β1

1− β2

)
and the variance of the y process is merely an

amplification of the variance of the ε process:

γ0 =

(
σ2
ε

1− β2
2

)
where γ0 is the first element of the autoco-

variance function of y. The variance of y will



be finite and positive as long as β2 is inside

the unit circle. We may note that this ex-

pression, in which we have assumed covari-

ance stationarity for y in order to state that

V ar(yt) = V ar(yt−1), may also be derived from

back–substitution of the DGP for yt, showing

that the current value yt may be written in

terms of an infinite sum of the ε process, with

each element εt−τ weighted by βτ2.

Now let us consider the autocovariances of the

y process. Although the elements of ε are seri-

ally independent, the elements of y clearly will

not be. In fact, the

cov[yt, yt−1] = cov[yt, yt+1] = γ1 =

(
β2σ

2
ε

1− β2
2

)
.

while the covariance between elements of y two

periods apart will be

cov[yt, yt−2] = γ2 =

(
β2

2σ
2
ε

1− β2
2

)



and so on. We may define the autocorrelation

function as

Corr[yt, yt−τ ] =

(
γτ

γ0

)
.

For the y process, the autocorrelations are β2,

β2
2, . . . . Since y is a so–called AR(1) process:

an autoregressive model of order one, its auto-

correlations will be geometric, defined by pow-

ers of β2. We may write such a model using

the lag operator L as

(1− β2L)yt = β1 + εt

and we may consider the root of the autore-

gressive polynomial 1 − β2L = 0 as defining

the behavior of the series. That root is β−1
2 ,

which must lie outside the unit circle if this

first-order difference equation in y is to be sta-

tionary. What if the root lies on the unit circle?

Then we have a so-called unit root process,

which will possess an infinite variance. Such



a process is said to be nonstationary, or inte-

grated of order one (I(1)), since differencing

the process once will render it stationary (or

I(0)). That is, if we consider the random walk

yt = yt−1 + εt

(1− L)yt = εt

The first difference of this process will be white

noise:

∆yt = εt

A nonstationary or integrated process should

be used in a regression equation, either as the

dependent variable or as a regressor, only with

great care, since in general regressions contain-

ing such variables are said to be spurious, indi-

cating the existence of correlations that do not

exist in the data generating process. That is,

an OLS regression of two independent random

walks will not yield an unbiased and consistent

estimate of the population slope parameter,

which equals zero.



There are circumstances where we may use

regression on nonstationary variables, but for

such a model to make sense, we must demon-

strate that the nonstationary variables are coin-

tegrated in the sense of Granger (1986). Such

variables are said to contain stochastic trends

(since a constant in the equation above will im-

ply the so–called random walk with drift model)

and a major challenge for time series modelling

is to distinguish between a deterministic trend,

which may be extracted via detrending proce-

dures, and a stochastic trend, which must be

removed by differencing. Neither remedy is ap-

propriate for the other. To establish whether a

stochastic trend is present in a series, we must

utilize a unit root test of the sort proposed by

Dickey and Fuller (or the improved version of

Elliott, Rothenberg, Stock known as DF–GLS,

available in Stata as dfgls), Phillips and Per-

ron (Stata command pperron) or Kwiatkowski

et al. (Stata user-contributed routine kpss).



The distinction between stationary and inte-

grated processes also implies that if we have

an autocorrelated error process, we would not

generally want to apply a first difference op-

erator to the series, since that would imply

that we assumed that ρ = 1. If we believe

that the error process follows an AR(1) model,

with |ρ| < 1, then the first difference operator

will not be appropriate; we should apply quasi–

differencing using a consistent estimate of ρ.

The conclusion that in the presence of serial

correlation one may apply OLS to generate un-

biased and consistent estimates of the param-

eters b has one important exception. If the re-

gression contains a lagged dependent variable

as well as autocorrelated errors, the regressor

and the disturbance are correlated by construc-

tion, and neither OLS nor GLS will generally



be consistent. The problem can be cast in
terms of omitted variables: e.g. if

yt = βyt−1 + εt

εt = ρεt−1 + ut

In which both β and ρ lie within the unit circle.
If we subtract ρyt−1 from yt, we arrive at

yt = (β + ρ)yt−1 − βρyt−2 + ut

which is a proper OLS regression, since ut
is not correlated with either lag of y. How-
ever, this regression does not yield estimates
of the original parameters, but only of com-
binations of those parameters. The inconsis-
tency of OLS in this context may be shown in
terms of the plim of the OLS estimator b:(

β + ρ

1 + βρ

)
This quantity will only equal β if ρ = 0; oth-
erwise it will lie between β and unity. An ap-
proach that would take account of the prob-
lem is an instrumental variables estimator: if



the error process is AR(1), then yt−2 is an ap-
propriate instrument for yt−1 in the original re-
gression.

What happens, in the absence of lagged de-
pendent variables, if we use OLS rather than
GLS to estimate the covariance matrix of the
parameter estimates? In the presence of posi-
tive first–order serial correlation, we can show
that the t–statistics are biased upward (that
is, the variances are biased downward) by our
ignoring the serial correlation in the error pro-
cess. We may either apply the appropriate
GLS estimator, or use a HAC estimator of
the covariance matrix such as that proposed
by Newey and West.

Testing for autocorrelation

How might we test for the presence of auto-
correlated errors? Like the case of pure het-
eroskedasticity, we may base tests of serial cor-
relation on the estimated moments of the OLS



residuals. If we estimate the regression of et on

et−1, the slope estimate will be a consistent es-

timator of the first–order autocorrelation coef-

ficient ρ1 of the ε process. A generalization of

this procedure is the Lagrange Multiplier (LM)

test of Breusch and Godfrey (BG), in which

the OLS residuals are regressed on the origi-

nal X matrix augmented with p lagged residual

series. The null hypothesis is that the errors

are serially independent up to order p, and pro-

ceeds by considering the partial correlations of

the OLS residual process (with the X variables

partialled off). Of course the residuals at time

t are orthogonal to the columns of X at time

t, but that need not be so for the lagged resid-

uals. This is perhaps the most useful test, in

that it allows the researcher to examine more

than first–order serial independence of the er-

rors in a single test, and is available in Stata

as estat bgodfrey.



A variation on the BG test is the Q test of

Box and Pierce (1970), as refined by Ljung

and Box (1979), which examines the first p

autocorrelations of the residual series:

Q = T (T + 2)
p∑

j=1

 r2
j

T − j


where r2

j is the jth empirical autocorrelation of

the residual series. This test, unlike the BG

test, does not condition on X: it is based on

the simple correlations of the residuals rather

than their partial correlations. It is less power-

ful than the BG test when the null hypothesis

(of no serial correlation in ε up to order p) is

false, but it is not model–dependent. Under

the null hypothesis, Q ∼ χ2(p). The Q test is

available in Stata as wntestq: labelled such to

indicate that it may be used as a general test

for white noise.

The oldest test (but still widely employed and



reported, despite its shortcomings) is the Durbin–

Watson d statistic:

d =

(∑T
t=2(et − et−1)2∑T

t=1 e
2
t

)
' 2(1− r)

The D–W test proceeds from the principle that

the numerator of the statistic, when expanded,

contains twice the variance of the process mi-

nus twice the (first) autocovariance of the se-

ries. If ρ = 0, that autocovariance will be

near zero, and the D–W will equal 2.0. As

ρ increases, D–W → 0, while as ρ → −1, D–

W → 4. However, the exact distribution of

the statistic depends on the regressor matrix

(which must contain a constant term, and must

not contain a lagged dependent variable), so

that rather than having a set of critical val-

ues, the D–W test has two, labelled dL and

dU . If the statistic falls below dL, a rejec-

tion is indicated; above dU , one does not re-

ject; and in between, the statistic is inconclu-

sive. (For negative autocorrelation, one tests



4 − d against the same tabulated critical val-

ues). The test is available in Stata as estat

dwatson, and is automatically provided in the

prais GLS estimation command.

In the presence of a lagged dependent vari-

able, the D–W statistic is biased toward 2,

and Durbin’s alternative (or ”h”) test must

be used. That test is a Lagrange multiplier

test in which one regresses residuals on their

own lags and the original X matrix. The test

is asymptotically equivalent to the BP test for

p = 1, and is available in Stata as command

estat durbinalt.

None of these tests are consistent in the con-

text of instrumental variables. In that case,

you should employ my implementation of the

Cumby–Huizinga (Econometrica, 1992) test,

ivactest. This test is a generalization of the

Breusch–Godfrey test and in fact becomes that



test in a OLS context. The C–H test can test

that a set of autocorrelations are zero, and

the set need not start with the first autocor-

relation. Like the Arellano–Bond (abar) test

commonly used after dynamic panel data es-

timation, the C–H test can be applied to any

contiguous set of autocorrelations.

GLS estimation with serial correlation

If the Ω matrix is known: in the case of AR(1)

errors, if ρ1 is known—then we may apply GLS

to the data by constructing quasi-differences,

yt − ρyt−1, Xj,t − ρXj,t−1, etc. for observa-

tions 2–T. The first observation is multiplied

by
√

1− ρ2. One may also apply an algebraic

transformation in the case of AR(2) errors.

But what if we must estimate ρ1 (or ρ1 and

ρ2)? Then any consistent estimator of those

parameters will suffice to define the feasible



Aitken estimator. The Prais–Winsten estima-

tor uses an estimate of ρ1 based on the OLS

residuals to create Ω̂; the Cochrane–Orcutt

variation on that estimator differs only in its

treatment of the first observation. Either of

these estimators may be iterated to conver-

gence: essentially they operate by “ping-ponging”

back and forth between estimates of β and θ

(equal in this case to the single parameter ρ).

Iteration refines the estimate of ρ: not asymp-

totically necessary, but recommended in small

samples. Both estimators are available in Stata

via the prais command.

Other approaches include that of maximum

likelihood, which estimates a single parameter

vector [β θ]′, and the grid search approach of

Hildreth and Lu. Although one might argue for

the superiority of MLE in this context, Monte

Carlo studies suggest that the Prais–Winsten

estimator is nearly as efficient in practice.



In summary, although we may employ GLS to

deal with detected problems of autocorrela-

tion, we should always be open to the possibil-

ity that this diagnosis reflects misspecification

of the model’s dynamics, or omission of one

or more key factors from the model. We may

mechanically correct for first-order (or higher-

order) serial correlation in a model, but we are

then attributing this persistence to some sort

of “clockwork” in the error process rather than

explaining its existence.



Forecasting with serially correlated errors

It is easy to show that in the presence of AR(p)
errors that the standard OLS forecast will no
longer be the BLUP. Consider a one-step-ahead
forecast beyond the model’s horizon. We no
longer have E[εt+1|Ψt] = 0, where Ψt is the
information set at time t. Since in the last pe-
riod of the sample, the least squares residual
was not zero, we would not expect the next
error to be zero either; our conditional expec-
tation of that quantity, based on the model,
is ρ̂ eT . Thus, this quantity should be added
to the least squares prediction Xb to generate
that one-step-ahead forecast. Likewise, a two-
step-ahead forecast would include a term ρ̂2 eT ,
and so on. The interval estimates will likewise
be modified for the presence of serial corre-
lation. This logic will be applied in the case
of more complex serial correlation structures
(such as AR(p) or moving average, MA(q), er-
ror processes) as well.


