BOSTON COLLEGE

Department of Economics
EC 771: Econometrics
Spring 2010
Prof. Baum, Mr. Dmitriev
Problem Set 2: due Thursday 18 February 2010 at classtime

1. Consider the two regressions

$$
\begin{aligned}
& y=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+u \\
& y=\alpha_{1} z_{1}+\alpha_{2} z_{2}+\alpha_{3} z_{3}+u
\end{aligned}
$$

where $z_{1}=x_{1}-2 x_{2}, z_{2}=x_{2}+4 x_{3}$ and $z_{3}=2 x_{1}-3 x_{2}+5 x_{3}$. Let $\mathbf{X}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$ and $\mathbf{Z}=\left[\begin{array}{lll}z_{1} & z_{2} & z_{3}\end{array}\right]$. Show that the columns of \mathbf{Z} can be expressed as linear combinations of the columns of \mathbf{X}, that is, $\mathbf{Z}=\mathbf{X A}$ for some 3×3 matrix \mathbf{A}. Find the elements of this matrix.

Show that the matrix \mathbf{A} is invertible by showing that the columns of \mathbf{X} are linear combinations of the columns of \mathbf{Z}. Find the elements of $\mathbf{A}^{\mathbf{- 1}}$. Show that the two regressions give the same fitted values and residuals.

Precisely how is the OLS estimate b_{1} related to the OLS estimate a_{1} ?
2. Use the dataset http://fmwww.bc.edu/ec-p/data/greene2008/tbrate in Stata for this exercise. It contains data (1950q1-1996q4) on three series: r_{t}, the three-month Treasury bill rate, π_{t}, the rate of inflation and y_{t}, the log of real GDP. For the period 1950q41996q4, run the regression

$$
\Delta r_{t}=\beta_{1}+\beta_{2} \pi_{t-1}+\beta_{3} \Delta y_{t-1}+\beta_{4} \Delta r_{t-1}+\beta_{5} \Delta r_{t-2}+u_{t}
$$

(Hint: use the Stata timeseries operators D. and L.). Plot the residuals and fitted values against time (hint: predict and tsline). Regress the residuals on the fitted values and a constant. What do you learn from this second regression? Now regress the fitted values on the residuals and a constant. What do you learn from this third regression?
3. For the same sample period, regress Δr_{t} on a constant, $\Delta y_{t-1}, \Delta r_{t-1}$ and Δr_{t-2}. Save the residuals from this regression (call them \hat{e}_{t}). Then regress π_{t-1} on the same regressors. Save the residuals from this regression and call them \hat{v}_{t}. Now regress \hat{e}_{t} on \hat{v}_{t}. How are the estimated coefficients and residuals from this last regression related to anything that you obtained when you ran the regression in exercise 3 ?
4. For any pair of random variables b_{1}, b_{2}, show, by using the fact that the covariance matrix of $\mathbf{b}=\left(b_{1} b_{2}\right)$ is positive semidefinite, that

$$
\left(\operatorname{Cov}\left(b_{1}, b_{2}\right)\right)^{2} \leq \operatorname{Var}\left(b_{1}\right) \operatorname{Var}\left(b_{2}\right)
$$

and show that the correlation between b_{1}, b_{2} must lie between $-1,+1$.
5. Consider the linear regression model

$$
y_{t}=\beta_{1}+\beta_{2} x_{t 2}+\beta_{3} x_{t 3}+u_{t}
$$

Explain how you could estimate this model subject to the restriction that $b_{2}+b_{3}=1$ by running a regression that imposes the restriction. Also explain how you could estimate the unrestricted model in such a way that the value of one of your coefficients would be zero if the restriction held exactly in your data.
6. Using Stata routine ivreg2 (ssc install ivreg2 if needed; full details on ivreg2 in BC WP 667, (Baum, 2006) and help ivreg2):

```
use http://fmwww.bc.edu/ec-p/data/hayashi/griliches76.dta
```

xi i.year
a. Estimate the regression of log wage (lw) on experience (expr), years of schooling (s) and iq, considering iq as potentially mismeasured; instrument the equation with age, kww and med (mother's years of education). What is the identification status of this equation?
b. These data are pooled cross-section time-series (but not a panel). Introduce time effects (the year dummies) and reestimate the equation. What effect has this had on the model? What do you conclude?
c. Reestimate the equation of part b using robust standard errors. What effect does this have on the estimated model?
d. Reestimate the equation of part b using generalized method of moments (IV-GMM) with robust standard errors. What effect does this have on the model? What assumptions have been relaxed vis-à-vis the model estimated in part b? How do you interpret the Hansen J statistic for this model? How do you interpret the Anderson canonical correlation statistic?
e. Use the IV-GMM endog option (the "C" or GMM distance test) to test a subset of the orthogonality conditions: the exogeneity/endogeneity of s (years of schooling). What do you conclude?
f. Reestimate the model treating s as endogenous. What does the Hansen J test signify in this context?

