Factor Variables and Marginal Effects in Stata 11

Christopher F Baum

Boston College and DIW Berlin

January 2010

Christopher F Baum (Boston College/DIW) Factor Variables and Marginal Effects

Jan 2010 1 / 18

Using factor variables

One of the biggest innovations in Stata version 11 is the introduction of *factor variables*. Just as Stata's time series operators allow you to refer to lagged variables (L. or differenced variables (D.), the \pm . operator allows you to specify factor variables for any non-negative integer-valued variable in your dataset.

In the auto.dta dataset, where rep78 takes on values 1...5, you could list rep78 i.rep78, or summarize i.rep78, or regress mpg i.rep78. Each one of those commands produces the appropriate indicator variables 'on-the-fly': not as permanent variables in your dataset, but available for the command.

Using factor variables

One of the biggest innovations in Stata version 11 is the introduction of *factor variables*. Just as Stata's time series operators allow you to refer to lagged variables (L. or differenced variables (D.), the i. operator allows you to specify factor variables for any non-negative integer-valued variable in your dataset.

In the auto.dta dataset, where rep78 takes on values 1...5, you could list rep78 i.rep78, or summarize i.rep78, or regress mpg i.rep78. Each one of those commands produces the appropriate indicator variables 'on-the-fly': not as permanent variables in your dataset, but available for the command.

For the list command, the variables will be named 1b.rep78, 2.rep78 ...5.rep78. The b. is the base level indicator, by default assigned to the smallest value. You can specify other base levels, such as the largest value, the most frequent value, or a particular value.

For the summarize command, only levels 2...5 will be shown; the base level is excluded from the list. Likewise, in a regression on i.rep78, the base level is the variable excluded from the regressor list to prevent perfect collinearity. The conditional mean of the excluded variable appears in the constant term.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For the list command, the variables will be named 1b.rep78, 2.rep78 ...5.rep78. The b. is the base level indicator, by default assigned to the smallest value. You can specify other base levels, such as the largest value, the most frequent value, or a particular value.

For the summarize command, only levels 2...5 will be shown; the base level is excluded from the list. Likewise, in a regression on i.rep78, the base level is the variable excluded from the regressor list to prevent perfect collinearity. The conditional mean of the excluded variable appears in the constant term.

Interaction effects

If this was the only feature of factor variables (being instantiated when called for) they would not be very useful. The real advantage of these variables is the ability to define interaction effects for both integer-valued and continuous variables. For instance, consider the indicator foreign in the auto dataset. We may use a new operator, #, to define an interaction:

regress mpg i.rep78 i.foreign i.rep78#i.foreign

All combinations of the two categorical variables will be defined, and included in the regression as appropriate (omitting base levels and cells with no observations).

In fact, we can specify this model more simply: rather than

```
regress mpg i.rep78 i.foreign i.rep78#i.foreign
we can use the factorial interaction operator, ##:
```

```
regress mpg i.rep78##i.foreign
```

which will provide exactly the same regression, producing all first-level and second-level interactions. Interactions are not limited to pairs of variables; up to eight factor variables may be included.

Furthermore, factor variables may be interacted with continuous variables to produce analysis of covariance models. The continuous variables are signalled by the new c. operator:

regress mpg i.foreign i.foreign#c.displacement

which essentially estimates two regression lines: one for domestic cars, one for foreign cars. Again, the factorial operator could be used to estimate the same model:

regress mpg i.foreign##c.displacement

As we will see in discussing marginal effects, it is very advantageous to use this syntax to describe interactions, both among categorical variables and between categorical variables and continuous variables. Indeed, it is likewise useful to use the same syntax to describe squared (and cubed...) terms:

regress mpg i.foreign c.displacement c.displacement#c.displacement

In this model, we allow for an intercept shift for foreign, but constrain the slopes to be equal across foreign and domestic cars. However, by using this syntax, we may ask Stata to calculate the marginal effect $\partial mpg/\partial displacement$, taking account of the squared term as well, as Stata understands the mathematics of the specification in this explicit form.

Computing marginal effects

With the introduction of factor variables in Stata 11, a powerful new command has been added: margins, which supersedes earlier versions' mfx and adjust commands. Those commands remain available, but the new command has many advantages. Like those commands, margins is used after an estimation command.

In the simplest case, margins applied after a simple one-way ANOVA estimated with regress i.rep78, with margins i.rep78, merely displays the conditional means for each category of rep78.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Computing marginal effects

With the introduction of factor variables in Stata 11, a powerful new command has been added: margins, which supersedes earlier versions' mfx and adjust commands. Those commands remain available, but the new command has many advantages. Like those commands, margins is used after an estimation command.

In the simplest case, margins applied after a simple one-way ANOVA estimated with regress i.rep78, with margins i.rep78, merely displays the conditional means for each category of rep78.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

· regress mpg	J T.TED/0					
Source	SS	df	MS		Number of obs	= 69
	E 4 0 4 1 E 2 2 2	4 107	252044		F(4, 64)	= 4.91
Model	549.415///	4 137	.353944		Prob > F	= 0.0016
Residual	1790.78712	64 27.9	9810488		R-squared	= 0.2348
					Adj R-squared	= 0.1869
Total	2340.2029	68 34.4	1147485		Root MSE	= 5.2897
mpg	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
rep78						
2	-1.875	4.181884	-0.45	0.655	-10.22927	6.479274
3	-1.566667	3.863059	-0.41	0.686	-9.284014	6.150681
4	.6666667	3.942718	0.17	0.866	-7.209818	8.543152
5	6.363636	4.066234	1.56	0.123	-1.759599	14.48687
_cons	21	3.740391	5.61	0.000	13.52771	28.47229

i ren78

xogxoog mpg

イロト イポト イヨト イヨト 三日

. margins i.rep78

Adjusted predictions

Model VCE : OLS

Number of obs =

Expression : Linear prediction, predict()

	Margin	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
rep78						
1	21	3.740391	5.61	0.000	13.66897	28.33103
2	19.125	1.870195	10.23	0.000	15.45948	22.79052
3	19.43333	.9657648	20.12	0.000	17.54047	21.3262
4	21.66667	1.246797	17.38	0.000	19.22299	24.11034
5	27.36364	1.594908	17.16	0.000	24.23767	30.4896

(日)

We now estimate a model including both displacement and its square:

, , , , , , , , , , , , , , , , , , , ,		*			*	
Source	SS	df	MS		Number of obs	= 74
					F(3, 70)	= 32.16
Model	1416.01205	3 472	.004018		Prob > F	= 0.0000
Residual	1027.44741	70 14.0	6778201		R-squared	= 0.5795
					Adj R-squared	= 0.5615
Total	2443.45946	73 33.4	4720474		Root MSE	= 3.8312
pam	Coef	Std. Err.	+	P>I+I	[95% Conf.	Intervall
			5	2 . 101	[500 0011.	111001 (011)
1.foreign	-2.88953	1.361911	-2.12	0.037	-5.605776	1732833
displacement	1482539	.0286111	-5.18	0.000	2053169	0911908
_						
c.						
dispiacement#						
displacement	0002116	0000593	3 63	0 001	0000953	0003279
displacement	.0002110	.0000363	3.03	0.001	.0000933	.0003279
_cons	41.40935	3.307231	12.52	0.000	34.81328	48.00541

. regress mpg i.foreign c.displacement c.displacement#c.displacement

Christopher F Baum (Boston College/DIW) Factor Variables and Marginal Effects

Jan 2010 11 / 18

A D N A P N A D N A D

margins can then properly evaluate the regression function for domestic and foreign cars at selected levels of displacement:

. margins i.	foreign, at(d	isplacement=	=(100 300))			
Adjusted pred Model VCE	ictions : OLS			Number	of obs	=	74
Expression	: Linear pred	iction, pred	dict()				
1at	: displacement	=	100				
2at	: displacement	=	300				
	I Margin	Delta-method Std. Err.	d z	P> z	[95% (Conf.	Interval]
_at#foreign 1 0 1 1 2 0 2 1	28.69991 25.81038 15.97674 13.08721	1.216418 .8317634 .7014015 1.624284	23.59 31.03 22.78 8.06	0.000 0.000 0.000 0.000	26.31 24.18 14.60 9.903	578 016 201 668	31.08405 27.44061 17.35146 16.27074

• • • • • • • • • • • •

In earlier versions of Stata, calculation of marginal effects in this model required some programming due to the nonlinear term displacement. Using margins, dydx, that is now simple. Furthermore, and most importantly, the default behavior of margins is to calculate average marginal effects (AMEs) rather than marginal effects at the average (MAE) or at some other point in the space of the regressors. In Stata 10, the user-written command margeff (Tamas Bartus, on the SSC Archive) was required to compute AMEs.

Current practice favors the use of AMEs: the computation of each observation's marginal effect with respect to an explanatory factor, averaged over the estimation sample, to the computation of MAEs (which reflect an average individual: e.g. a family with 2.3 children).

< 日 > < 同 > < 回 > < 回 > < □ > <

In earlier versions of Stata, calculation of marginal effects in this model required some programming due to the nonlinear term displacement. Using margins, dydx, that is now simple. Furthermore, and most importantly, the default behavior of margins is to calculate average marginal effects (AMEs) rather than marginal effects at the average (MAE) or at some other point in the space of the regressors. In Stata 10, the user-written command margeff (Tamas Bartus, on the SSC Archive) was required to compute AMEs.

Current practice favors the use of AMEs: the computation of each observation's marginal effect with respect to an explanatory factor, averaged over the estimation sample, to the computation of MAEs (which reflect an average individual: e.g. a family with 2.3 children).

イロト 不得 トイヨト イヨト

We illustrate by computing average marginal effects (AMEs) for the prior regression:

dy/dx w.r.t.	: 1.foreign displacement			
Expression	: ULS : Linear prediction, predict()			
Average marg:	inal effects	Number of obs	=	74
. margins, d	dydx(foreign displacement)			

	1	Delta-method				
	dy/dx	Std. Err.	Z	P> z	[95% Conf.	Interval]
1.foreign displacement	-2.88953 0647596	1.361911 .007902	-2.12 -8.20	0.034 0.000	-5.558827 0802473	2202327 049272

Note: dy/dx for factor levels is the discrete change from the base level.

Alternatively, we may compute elasticities or semi-elasticities:

. margins,	ey	ex(displacemer	nt) at(displ	acement=	=(100(100)	400))		
Average marg Model VCE	rina :	al effects OLS			Number	f of obs	=	74
Expression ey/ex w.r.t.	:	Linear predio displacement	ction, predi	.ct()				
1at	:	displacement	=	100				
2at	:	displacement	=	200				
3at	:	displacement	=	300				
4at	:	displacement	=	400				
		De	elta-method					
		ey/ex	Std. Err.	Z	P> z	[95% Coi	nf.	Interval]
displacement								
1 2 3 4		3813974 6603459 4261477 .5613844	.0537804 .0952119 .193751 .4817784	-7.09 -6.94 -2.20 1.17	0.000 0.000 0.028 0.244	486803 8469573 8058929 3828833	5 8 6 9	2759898 473734 0464028 1.505653

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Consider a model where we specify a factorial interaction between categorical and continuous covariates:

regress mpg i.foreign i.rep78##c.displacement

In this specification, each level of rep78 has its own intercept and slope, whereas foreign only shifts the intercept term.

We may compute elasticities or semi-elasticities with the over option of margins for all combinations of foreign and rep78:

Consider a model where we specify a factorial interaction between categorical and continuous covariates:

regress mpg i.foreign i.rep78##c.displacement

In this specification, each level of rep78 has its own intercept and slope, whereas foreign only shifts the intercept term.

We may compute elasticities or semi-elasticities with the over option of margins for all combinations of foreign and rep78:

Consider a model where we specify a factorial interaction between categorical and continuous covariates:

```
regress mpg i.foreign i.rep78##c.displacement
```

In this specification, each level of rep78 has its own intercept and slope, whereas foreign only shifts the intercept term.

We may compute elasticities or semi-elasticities with the over option of margins for all combinations of foreign and rep78:

. margins,	eyex(displacem	ent) over(fore	ign re	p78)			
Average marg	final effects			Number	of ob:	5 =	69
Model VCE	: OLS						
Expression ey/ex w.r.t. over	: Linear pred : displacement : foreign rep	iction, predic t 78	t()				
	ey/ex	Delta-method Std. Err.	Z	P> z	[95%	Conf.	Interval]
displacement foreigr	: 1 #						

	1					
	ey/ex	Std. Err.	Z	P> z	[95% Conf.	Interval]
displacement						
foreign#						
rep78						
0 1	7171875	.5342	-1.34	0.179	-1.7642	.3298253
0 2	5953046	.219885	-2.71	0.007	-1.026271	1643379
0 3	4620597	.0999242	-4.62	0.000	6579077	2662118
0 4	6327362	.1647866	-3.84	0.000	955712	3097604
0 5	8726071	.0983042	-8.88	0.000	-1.06528	6799345
1 3	128192	.0228214	-5.62	0.000	1729213	0834628
1 4	1851193	.0380458	-4.87	0.000	2596876	110551
1 5	-1.689962	.3125979	-5.41	0.000	-2.302642	-1.077281

イロト イロト イヨト イヨト

The margins command has many other capabilities which we will not discuss here. Perusal of the Stata 11 reference manual article on margins would be useful to explore its additional features.