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Chapter 18:

Advanced time series topics

Infinite distributed lag models

Consider a pair of timeseries [yt, zt]. An infinite

distributed lag model (IDL) relating yt to all

observed values of z is

yt = α+ δ0zt + δ1zt−1 + δ2zt−2 + . . .+ ut

where the sum leads back to the infinite past.

Unlike a finite DL model, the IDL does not

require us to choose a truncation point. In

order for this model to make sense, the lag

coefficients δj must approach zero as j → ∞.

They need not do so monotonically, but the



influence of z in the distant past on current y

should be negligible.

How can we estimate such a model from a

finite sample of data? We must place restric-

tions on the δj parameters that allow us to

express the model more parsimoniously.

The dynamic multipliers or impact effects of

changes in the z sequence are naturally just

the δ coefficients themselves. The long-run

effect of a temporary change in z will be zero

as j →∞. The long-run effect of a permanent

change: for instance, z increasing by one unit

at period t and maintaining that higher level

will be the sum of all δj coefficients. As long as

the coefficients decline toward zero as j →∞,

this infinite sum will be well behaved, and can

often be well approximated by a sum of the

first p terms.



In order to estimate an IDL with least squares

methods, we must make an assumption on the

correlation between z and u. Strict exogeneity—

where the conditional mean of u is zero, condi-

tioned on past, present and future z—is usually

not a workable assumption since it rules out

correlations between current u and future z.

Such correlations would be expected to appear

in a model where a policy response to a sizable

shock was expected (e.g., government spend-

ing after Hurricane Katrina). A more workable

assumption is that u is uncorrelated with cur-

rent and past z, or E(ut|zt, zt−1, . . .) = 0. This

assumption does not place restrictions on the

serial correlation properties of u (just as in the

case of finite DL models).

The Koyck (geometric) distributed lag model

The simplest abstraction from the infeasible

IDL model is the Koyck or geometric distributed



lag (GDL) model, in which the sequence of δj
parameters depends on only two parameters:

δj = γρj, |ρ| < 1

The parameters γ and ρ may be positive or

negative. Convergence of the δj to zero oc-

curs at a fast rate, since they are powers of a

fraction. The impact multiplier is just δ0 = γ.

If γ > 0 and ρ > 0, all δj parameters are posi-

tive, and decline monotonically with j. If ρ < 0

then parameters alternate in sign. The long

run propensity can be computed as the sum of

the infinite geometric series 1 + ρ+ ρ2 + . . . =

1/(1− ρ) times γ, and will have the same sign

as γ. This definition of the δj sequence still

leaves us with an infinite sum, but if we write

the equation at time t and t− 1 we have:

yt = α+ γzt + γρzt−1 + γρ2zt−2 + . . .+ ut

and

yt−1 = α+γzt−1 +γρzt−2 +γρ2zt−3 + . . .+ut−1



If we multiply the second equation by ρ and

subtract it from the first, most of the terms

cancel:

yt − ρyt−1 = (1− ρ)α+ γzt + (ut − ρut−1)

or

yt = α0 + γzt + ρyt−1 + (ut − ρut−1)

where α0 = (1− ρ)α.

Although this model is simple enough, it is

not straightforward to estimate since it has a

lagged dependent variable and an error term

that is by construction correlated with the LDV

(the error term is actually a moving average

process of order one, or MA(1)). We can es-

timate the Koyck lag model with instrumental

variables; if the assumption on the conditional

mean of u holds, we can use zt−1 as an appro-

priate instrument for yt−1. It is likely that we

will want to calculate HAC standard errors for



the equation to account for serial correlation

in the composite error term, since the mov-

ing average process will not have independent

elements.

Alternatively, if we assume that the u process

is AR(1) with the same value of ρ,

ut = ρut−1 + εt

and the εt are assumed to be independent of

(zt, yt−1, zt−1, . . .), then we can write the equa-

tion to be estimated as

yt = α0 + γzt + ρyt−1 + εt

which may be consistently estimated by OLS,

with no problem of serial correlation in the er-

rors. However, it does depend on the assump-

tion that the ρ in the AR(1) error process is the

same ρ governing decay in the δj coefficients.

The Koyck model may be extended to mul-

tiple explanatory variables, but relies on the



assumption that the same decay parameter ρ

applies to each of them.

Rational distributed lag models

Although the Koyck lag model is useful, it is

restrictive in that it assumes that the weights

monotonically decline (in absolute value if ρ <

0). The GDL is a special case of a more gen-

eral model of a rational distributed lag (RDL).

A simple RDL can be constructed by adding a

lagged z term to our GDL example:

yt = α0 + γ0zt + ρyt−1 + γ1zt−1 + vt

where vt is the MA(1) process ut − ρut−1. By

repeated back-substitution, we can show that

this representation is equation to the infinite

DL model

yt = α+ γ0zt + (ργ0 + γ1)zt−1 + ρ(ργ0 + γ1)zt−2

+ρ2(ργ0 + γ1)zt−3 + . . .+ ut



The impact multiplier is γ0, while the j−period

delay multiplier (coefficient on zt−j) is

ρj−1(ργ0 + γ1), j ≥ 1.

Thus, the impact propensity can differ in sign

from the other lag coefficients (although for

ρ > 0 the sequence of coefficients on follow-

ing terms is monotonic with the same sign as

(ργ0 + γ1). The long-run multiplier for this

variant of the RDL model is equal to (γ0 +

γ1)/(1 − ρ), with the same sign as (γ0 + γ1),

and nonzero as long as (γ0 + γ1) 6= 0.

Unit root tests

Given the distinction between trend-stationary

and unit root processes, it would seem to be

very important to be able to determine whether

a particular timeseries which, for instance, gen-

erally increases in value is being driven by some

underlying trend, or whether its evolution re-

flects a unit root in its data generating process.



Those who study macroeconomic phenomena
will want to know whether economic recessions
have permanent consequences for the level of
future GDP (as they would if GDP exhibits
a unit root), or whether they are merely de-
viations from a trend rate of growth, tem-
porary downturns that will be offset by the
following recovery. Those who are concerned
with the stock market want to know whether
stock prices really do follow a random walk—
i.e. exhibit unit root behavior—rather than
some complicated combination of trends and
cycles. If stock prices’ behavior reflect a unit
root, then “technical analysis” or “charting” is
no more useful than astrology. On the other
hand, if there are no unit roots in stock prices,
all of the effort applied by stock analysts to
studying the behavior of these series should
have a reward.

This concern has given rise to a battery of unit
root tests: statistical procedures that are de-
signed to render a verdict as to whether a given



sample of timeseries data appears to imply the

presence of a unit root in that timeseries, or

whether the series may be considered station-

ary. In terms of our prior terminology, we are

trying to discern whether the series exhibits

I(1) (unit root) or I(0) (stationary) behavior.

It turns out that this is a fairly difficult prob-

lem, from a statistical perspective. It might

appear sufficient to merely estimate an equa-

tion such as yt = φ1yt−1 + εt, modified to the

form

∆yt = γyt−1 + εt (1)

using the available sample of data, and test

the null hypothesis that γ = (φ1 − 1) = 1.

For various reasons, that turns out to be prob-

lematic, in the sense that the distribution of

the test statistic is nonstandard under that

null. The t test for γ = 0 does not have a

t distribution under the null hypothesis; even

as T → ∞, the distribution of this t statis-

tic will not be N(0,1). Under the alternative



hypothesis, the test statistic is well behaved,

but under the null—the point of interest—it

follows the “Dickey–Fuller” distribution rather

than the Normal or t. The critical points on

the D–F distribution, as established by simula-

tion, are considerably larger than those of the

equivalent t; whereas a value of –1.645 would

be on the borderline of rejection at the 95%

level for a one–tailed t test, the D-F critical

value would be –1.961 for T = 1000.

Of course, the model (1) may not be the ap-

propriate special case of the autoregressive dis-

tributed lag model; we may want to allow for

an additional term which would become a con-

stant term in a stable autoregressive process,

or a drift term in a random walk process. Oth-

erwise, we are specifying a stable autoregres-

sive process with a zero mean under the alter-

native hypothesis, which may not be sensible



(unless the series has already been demeaned).

With that modification, we would test

∆yt = µ+ γyt−1 + εt (2)

which would then allow both a test for a unit

root (γ = 0) and a joint test for a white noise

process (an F test for γ = 0 and µ = 0). Note

that the critical values for the t test are not the

same as those that would be used in (1); for

instance, the D–F critical value for T = 1000 in

this test is –2.864. One must also note that

this model would not be appropriate if there

was an obvious trend in the series, since the

model under the alternative has no mechanism

to generate such a trend (as the RW–with–

drift model does under the null).

The most general form of the standard D–F

test allows for both a constant in the relation-

ship and a deterministic trend:

∆yt = µ+ γyt−1 + βt+ εt (3)



Such a model will allow for both a nonzero

mean for y (with µ 6= 0) and trending behavior

(with β 6= 0) under the alternative hypothesis,

where γ < 0. The most likely null hypothesis

is then that of a RW-with-drift, so that under

H0 γ = 0 and β = 0 (no deterministic trend).

This null could be rejected for three reasons:

(a) there could be no unit root, but a determin-

istic trend; (b) there could be a unit root, but

with a deterministic trend; or (c) there might

be no unit root nor deterministic trend. The

most general alternative is (a), for which an F

test is required (since two restrictions on the

parameter vector are implied under the null).

The F statistic is calculated in the normal way,

but the distribution is again nonstandard, and

tabulated values for the “D–F F distribution”

must be consulted. More commonly, we con-

sider a t test on γ; once again, the critical

values are specific to model (3). For instance,

the D–F critical value for T = 1000 in this test



is –3.408: larger yet than the critical values in

the constant–only model, which in turn exceed

those for the original white noise model.

Any of the forms of this test presume the ex-

istence of white noise errors in the regression.

If that is implausible, the test will lose signif-

icant power. To cope with this issue, any of

the ‘Dickey–Fuller” tests in practice are usually

employed as the “augmented Dickey–Fuller”

test, or ADF test, in which a number of lags

of the dependent variable are added to the re-

gression to whiten the errors:

∆yt = µ+γyt−1+ϑ1∆yt−1+ϑ2∆yt−2+. . .+βt+εt
(4)

In this formulation, we consider an AR(p) model

as the baseline model, rather than the AR(1)

model of the simple Dickey–Fuller framework.

The choice of appropriate lag length is likely

to depend on the frequency of the data; a



general-to-specific strategy (analogous to the

Ng–Perron sequential t procedure) or an infor-

mation criterion may also be used. We will

discuss the use of a modified AIC below.

Phillips–Perron tests

The augmentation of the original D–F regres-

sion with lags of the dependent variable is mo-

tivated by the need to generate iid errors in

that model, since an OLS estimator of the co-

variance matrix is being employed. An alterna-

tive strategy for allowing for errors that are not

iid is that of Phillips (1987) and Phillips and

Perron (1988), known as the Phillips–Perron

(PP) unit root test. The PP test deals with

potential serial correlation in the errors by em-

ploying a correction factor that estimates the

long-run variance of the error process with a

variant of the Newey-West formula. Like the



ADF test, use of the PP test requires specifi-

cation of a lag order; in the latter case, the lag

order designates the number of lags to be in-

cluded in the long–run variance estimate. The

PP test allows for dependence among distur-

bances of either AR or MA form, but have been

shown to exhibit serious size distortions in the

presence of negative autocorrelations. In prin-

ciple, the PP tests should be more powerful

than the ADF alternative. The same critical

values are used for the ADF and PP tests.

The DF-GLS test

Conventional unit root tests are known to lose

power dramatically against stationary alterna-

tives with a low order MA process: a charac-

terization that fits well to a number of macroe-

conomic time series. Consequently, these orig-

inal tests have been largely supplanted in many

researchers’ toolkits by improved alternatives.



Along the lines of the ADF test, a more pow-
erful variant is the DFGLS test proposed by
Elliott, Rothenberg and Stock (ERS, 1996),
originally authored in Stata by Baum and Sper-
ling and available in official Stata as dfgls.dfgls
performs the ERS efficient test for an autore-
gressive unit root. This test is similar to an
(augmented) Dickey-Fuller t test, as performed
by dfuller, but has the best overall perfor-
mance in terms of small-sample size and power,
dominating the ordinary Dickey-Fuller test. The
dfgls test “has substantially improved power
when an unknown mean or trend is present”
(ERS, p.813).

dfgls applies a generalized least squares (GLS)
detrending (demeaning) step to the varname:

ydt = yt − β̂
′
zt

For detrending, zt = (1, t)
′
and β̂0, β̂1 are calcu-

lated by regressing [y1, (1− ᾱL) y2, ..., (1− ᾱL) yT ]



onto [z1, (1− ᾱL) z2, ..., (1− ᾱL) zT ] where ᾱ =

1 + c̄/T with c̄ = −13.5, and L is the lag

operator. For demeaning, zt = (1)′ and the

same regression is run with c̄ = −7.0. The val-

ues of c̄ are chosen so that “the test achieves

the power envelope against stationary alter-

natives (is asymptotically MPI (most power-

ful invariant)) at 50 percent power” (Stock,

1994, p.2769; emphasis added). The aug-

mented Dickey-Fuller regression is then com-

puted using the ydt series:

∆ydt = α+ γt+ ρydt−1 +
∑m
i=1 δi∆ydt−i + εt

where m=maxlag.The notrend option suppresses

the time trend in this regression.

Approximate critical values for the GLS de-

trended test are taken from ERS, Table 1 (p.825).

Approximate critical values for the GLS de-

meaned test are identical to those applicable to



the no–constant, no–trend Dickey–Fuller test,

and are computed using the dfuller code.

The dfgls routine includes a very powerful lag

selection criterion, the “modified AIC” (MAIC)

criterion proposed by Ng and Perron (2001).

They have established that use of this MAIC

criterion may provide “huge size improvements”

(2001, abstract) in the dfgls test. The crite-

rion, indicating the appropriate lag order, is

printed on dfgls’ output, and may be used to

select the test statistic from which inference is

to be drawn.

It should be noted that all of the lag length

criteria employed by dfgls (the sequential t

test of Ng and Perron (1995), the SC, and

the MAIC) are calculated, for various lags, by

holding the sample size fixed at that defined

for the longest lag. These criteria cannot be

meaningfully compared over lag lengths if the



underlying sample is altered to use all avail-

able observations. That said, if the optimal

lag length (by whatever criterion) is found to

be much less than that picked by the Schwert

criterion, it would be advisable to rerun the

test with the maxlag option specifying that op-

timal lag length, especially when using samples

of modest size.

The KPSS test

An alternative test is that proposed by Kwiatkowski

et al. (1992), the so-called KPSS test, which

has a null hypothesis of stationarity (that is,

H0 : y ∼ I(0)). It is also described in Baum

(2000) and implemented in Stata. This com-

mand is not built in to Stata, but can be read-

ily installed in any version of Stata with ac-

cess to the Web by using the “ssc install kpss”

command. kpss performs the Kwiatkowski,

Phillips, Schmidt, Shin (KPSS, 1992) test for



stationarity of a time series. The test may

be conducted under the null of either trend

stationarity (the default) or level stationarity.

Inference from this test is complementary to

that derived from those based on the Dickey–

Fuller distribution (such as dfgls, dfuller and

pperron). The KPSS test is often used in con-

junction with those tests to investigate the

possibility that a series is fractionally integrated

(that is, neither I(1) nor I(0)): see Lee and

Schmidt (1996).

The series is detrended (demeaned) by regress-

ing y on zt = (1, t)
′ (
zt = (1)′

)
, yielding resid-

uals et. Let the partial sum series of et be

st. Then the zero-order KPSS statistic k0 =

T−2∑T
t=1 s

2
t / T−1∑T

t=1 e
2
t . For maxlag> 0, the

denominator is computed as the Newey-West

estimate of the long run variance of the series;

see [R] newey.



Approximate critical values for the KPSS test

are taken from KPSS (1992). The kpss rou-

tine includes two options recommended by the

work of Hobijn et al. (1998). An automatic

bandwidth selection routine has been added,

rendering it unnecessary to evaluate a range

of test statistics for various lags. An option

to weight the empirical autocovariance func-

tion by the Quadratic Spectral kernel, rather

than the Bartlett kernel employed by KPSS,

has also been introduced. These options may

be used separately or in conjunction.

Combining inference from I(1) and I(0)

tests

The two families of unit root tests may be

used in conjunction to establish the nature of

the data generating process for a given time-

series, and in particular to signal the presence



of fractional integration in the series. If in-

ference from the DFGLS test rejects its null

hypothesis of unit root behavior, or nonsta-

tionarity, while the KPSS test also rejects its

null, then we might conclude that both I(1)

and I(0) are rejected by the data. That sets

the stage for an alternative explanation of the

timeseries’ behavior: that of fractional integra-

tion, or long-range dependence, in which the

series may be characterized as I(d), 0 < d < 1,

neither I(0) nor I(1).

Spurious regression

In a cross-section, we speak of “spurious corre-

lation” when the observed correlation between

two variables x and y is actually related to their

correlations with a third variable z. In that

context, regressing x on y shows a significant

relationship, but when x is regressed on y and

z, the coefficient of y is no longer significant.



This can also happen in a time series context

with stationary variables. For instance, we may

have two variables that both contain a strong

trend, but which are not related to each other.

A regression including the trend term will re-

veal the spurious correlation that would be ev-

ident in a y on x regression.

When we are dealing with nonstationary (unit

root) processes, characterized as I(1), there is

an additional complication: even if there are

no trends in the series, we may find that two

independent random walks appear to be signif-

icantly correlated. Consider the IRWs

xt = xt−1 + at

yt = yt−1 + et

where at, et are i.i.d. innovations, independent

of each other. What if we run the contempo-

raneous regression

ŷt = b0 + b1xt



and examine the standard t-statistic for b1?

We would hope that since there is no rela-

tion between these two variables, the proba-

bility limit of b1 would be zero implying that

its t-statistic should be zero 95% of the time.

The R2 should tend to zero as well. However,

Granger and Newbold showed that just the op-

posite result is found in this instance of the

spurious regression problem. The standard

t-statistics will reject the null of β1 = 0 over

66% of the time in samples of size 50. As

the sample size increases, the problem wors-

ens. This occurs because the error term in this

relationship is a random walk under the null,

rather than a meanzero i.i.d. error. Including a

time trend in the model does not improve this

outcome. The R2 from this regression also is

likely to take on a large value. The spurious

regression problem will occur with multiple ex-

planatory variables, even if some of them are

I(0) and some I(1). This problem is then quite



serious, since it suggests that many of the re-

gressions run on time series data before an

understanding of nonstationary processes was

developed may indeed be spurious.

Cointegration

The presence of the spurious regression prob-

lem suggests that I(1) variables should be used

with extreme caution in econometric models.

Differencing the variables will generally render

them stationary (I(0)) but it also limits the

kinds of questions we may ask and answer with

these data.

The notion of cointegration, as proposed by

Engle and Granger in 1987, suggests that there

are some regressions using I(1) variables that

are meaningful. If we have two I(1) processes

xt, yt, a linear combination such as yt − βxt is

generally an I(1) process for any β. But it is



possible that for some β this expression pro-

duces an I(0) process which is covariance sta-

tionary: with a constant mean, constant vari-

ance and well-behaved autocorrelation func-

tion. If such a β exists, we say that x and

y are cointegrated with cointegrating parame-

ter β. The parameter is not unique, but can be

made unique by normalizing the relationship on

one variable. There is no notion of causality

here, so it does not matter whether we write

yt − βxt or xt − γyt.

If yt and xt are random walk (I(1)) processes,

then they wander around and may go arbitrar-

ily far from any particular point: after all, they

have infinite variance. But if they are cointe-

grated, then their linear combination will be

bounded, and will not wander too far from

zero. After all, the linear combination yt−βxt is

of the nature of a regression residual process.



As an example, consider two interest rate se-

ries. (Indeed, interest rates cannot travel ar-

bitrarily far in reality: they cannot be nega-

tive, and cannot be too large unless inflation

is very high). But the annualized six-month

and three-month Treasury bill yields both ap-

pear to be I(1) processes when measured at

a quarterly frequency. But if we consider the

spread between them—the special linear com-

bination r6t−r3t—it appears to be a stationary

process. We thus may conclude that r6 and r3

are cointegrated.

As in many cases of cointegration of economic

and financial series, this finding is implied by

economic theory. The spread between the three-

and six-month rates can be used to define the

forward rate, and those two instruments may

be used to purchase a three-month forward

T-bill. That bill, like any portfolio of Trea-

sury securities, must have a positive yield, and



that puts restrictions on the values which for-

ward rates may assume. The three-month for-

ward rate is the rate which equates the six-

month “buy and hold“ strategy with the strat-

egy of buying the three-month bill and rolling it

over to another three-month bill at that time.

By the expectations hypothesis of the term

structure of interest rates, those two strate-

gies should have the same expected return.

We could violate the expectations hypothe-

sis in the presence of liquidity premia—for in-

stance, investors might pay extra for the con-

venience of the shorter-tenor instrument—but

the two yields cannot be unrelated as long as

arbitrage between them can exist. Theory,

then, argues that the six-month and three-

month Treasury bill yields should be cointe-

grated. There can be temporary deviations

from equilibrium—for instance, when the stock

market is very volatile, the demand for very

short-term Treasuries may be very high—but



cointegration says that in the long run the

equilibrium relationship projected by the expec-

tations hypothesis (or its variant with a risk

premium) must hold. In this case, we consid-

ered the spread itself, in effect setting β to

unity; alternatively, we could allow the data to

determine β by running an OLS regression of y

on x and testing the resulting b against unity.

In any case it is the residual from that “Engle–

Granger” regression which must be examined

for stationarity via a Dickey-Fuller or DF-GLS

test.

Under the null hypothesis that xt and yt are in-

dependent random walks—not cointegrated—

the OLS regression of y on x (or x on y) is a

spurious regression. Under the alternative hy-

pothesis of cointegration, this regression pro-

vides a consistent estimate of the cointegrating

parameter. The test must be done then versus

the “Dickey–Fuller” distribution, with different



critical values than those appropriate for the

standard D–F test to account for the estima-

tion of β. This regression also may be run with

a linear trend, although the strict definition of

cointegration does not allow for a time trend.

If y and x are cointegrated, then we can esti-

mate a model using the levels of those series,

as we now discuss.

Error correction models

If two series are stationary, (I(0)), then we

could write down a model such as we consid-

ered in describing the rational distributed lag:

yt = α0 + γ0xt + ρyt−1 + γ1xt−1 + ut

If both y and x are unit root (I(1)) processes

which are not cointegrated, this model would

be inappropriate because it would represent a

spurious regression. We could in that case



work with the stationary forms of these series,

obtained by differencing:

∆yt = λ0 + γ0∆xt + ρ∆yt−1 + γ1∆xt−1 + vt

where for generality we have added a constant

term (corresponding to a trend in the levels

equation). We could estimate this equation

without difficulty, and derive the parameters

of interest (impact effect, delay multipliers and

long-run effect) from it.

But if we find that x and y are cointegrated,

we have additional I(0) variables that can be

included in the relationship. Define st = yt−βxt
as the error in the equilibrium relationship at

time t. Now we can introduce a lag of st in

the equation:

∆yt = λ0 + γ0∆xt + ρ∆yt−1 + γ1∆xt−1 + δstvt

∆yt = λ0 + γ0∆xt + ρ∆yt−1 + γ1∆xt−1 +

δ(yt−1 − βxt−1) + vt



This is the so-called error correction model,

which takes into account the fact that there

is an equilibrium relationship between the non-

stationary level variables x and y. The error

correction term st expresses the impact of dis-

equilibrium on the relationship. To consider

this, work with an even simpler form of the

model in differences:

∆yt = λ0 + γ0∆xt + δ(yt−1 − βxt−1) + vt

with δ < 0, representing the principle of neg-

ative feedback. If last period yt−1 > βxt−1, y

is above its equilibrium level, so that the er-

ror correction term pushes y down. If yt−1 <

βxt−1, the error correction term serves to in-

crease y this period. To estimate this model,

we merely regress ∆yt on ∆xt and st, having

estimated st in the test for cointegration (and

the same for the expanded model above with

lags of both y and x in the regression. In this



case, we would be ignoring important informa-

tion about the joint time series process gen-

erating yt, xt if we were to run the regression

in differences. Including the error correction

term allows us to take that information into

account.

Vector autoregressions

The vector autoregression model (VAR) is a

framework used for modeling multivariate rela-

tionships: in its pure form, without any restric-

tions posed by economic theory. It is an exten-

sion of the univariate autoregressive model. If

we consider two economic timeseries y1 and y2,

we might model each as a univariate autore-

gression on several of their respective lagged

values. That would ignore any possible inter-

actions between the variables, though. We can

capture those interactions—still in the spirit of

a proper OLS regression framework, with no



simultaneity taken into account—with a VAR

model. A VAR is characterised by two param-

eters: p, the longest lag in the autoregression,

and k, the number of variables in the VAR.

The simplest VAR would set p = 1, k = 2:(
y1t
y2t

)
=

(
µ1
µ2

)
+

[
π11.1 π12.1
π21.1 π22.1

](
y1t−1
y2t−1

)
+

(
ε1t
ε2t

)
or in matrix terms

yt = µ+ Π1yt−1 + εt

A pth order VAR can likewise be written as

yt = µ+ Π1yt−1 + +Π2yt−2 + . . .+ +Πpyt−p+ εt

where each of the Π matrices are estimated

coefficients on a particular lag of the set of

y variables. This can be viewed as a reduced

form of a model in which the y variables are

jointly determined, and then solved for the re-

duced form:

AYt = BXt + µ+ η



Any linear structural econometric model (in-

cluding a number of exogenous or predeter-

mined variables X, which may include lagged

y variables) can be written in this form, where

the off-diagonal coefficients in the A matrix

represent the contemporaneous effects of each

y on another. If we use economic theory to im-

pose identifying restrictions on the A matrix,

we will arrive at coefficient matrices A and B to

be estimated by instrumental variables meth-

ods. Those coefficient estimates may then be

manipulated to yield the structural model’s re-

duced form:

Yt = A−1BXt +A−1µ+A−1η

Yt = ΦXt + λ+ ζ

This is known as the restricted reduced form

of the economic model, in that it embodies the

restrictions (usually zero restrictions) placed

on the elements of A and B by economic the-

ory. We may contrast it with the unrestricted



reduced form defined by the VAR model, which

does not place any restrictions on the coeffi-

cients of the reduced form, but estimates them

directly from the data. We have written the

VAR above as a pure VAR, with only lagged

values of ys as regressors, but a VAR can be

written in terms of a number of exogenous

variables X as well.

In any case, we may estimate the VAR by a

sequence of OLS regressions. Since the VAR

has the same variables on the right hand side of

each equation, there is no gain to systems es-

timation. Computationally, it makes sense to

take advantage of that common set of regres-

sors in estimating the VAR but that is purely

a matter of convenience. But if you did not

have a computer program that knew what a

VAR was, you could estimate each equation

of the VAR with a standard OLS routine. In

Stata, there is a suite of commands named



var... which are used to estimate and analyze
VARs.

What we often want to do with the VAR though,
is to evaluate the effects of shocks, or in-
novations. If we have a three-variable VAR
system—with, for instance, inflation, unem-
ployment and interest rates—we want to eval-
uate the effect on each variable of a shock,
and trace the time form of the response. Will
a shock to inflation caused by oil prices have a
permanent effect on any of the three variables,
or a transitory effect? If its effect is transitory,
how long will it take to dissipate? Those ques-
tions may be answered following estimation of
the VAR by computing the IRFs—impulse re-
sponse functions—that allow us to trace out
these interrelationships.

Before computing these effects, we must be
concerned with stability of the VAR. A sta-
ble VAR is stationary in terms of having time-
invariant first and second moments. If the re-
sponse to a shock does not die out over time,



then the VAR is not stable. (For instance, an
oil price shock may have a permanent effect on
the price level, but it should not have a perma-
nent effect on the rate of inflation). Just as
in univariate modeling, if there is a unit root
in the VAR representation, then a shock will
have infinite memory. We might in this cir-
cumstance rely on a VAR fit to the differences
of nonstationary variables, or we might better
take advantage of a finding of cointegration
among those variables and build an enhanced
model: the so-called vector error correction
model, or VECM, as we discuss below.

Consider stability in the context of a first order
VAR such as

yt = µ+ Π1yt−1 + εt

This is a vector difference equation, the solu-
tion of which may be written as

yt = (I + Π1 + Π2
1 + . . .+ Πt−1

1 )µ+ Πt
1y0

+
t−1∑
i=0

Πi
1εt−i



If the model is stable, then the bracketed sum
of terms in Π1 has a finite limit as t → ∞ of
(I − Π1)−1. That expression is the matrix of
long run multipliers, representing the steady
state effect of a shock. That effect may be
other than zero, but if the VAR is to be stable,
the dynamic multiplier representing the addi-
tional effect of the shock in a later period must
eventually go to zero. The condition that en-
sures that this finite limit exists relates to the
eigenvalues of the matrix Π1, which all must
have a modulus less than one.

In a univariate context, consider the second
order autoregression

yt = φ1yt−1 + φ2yt−2 + εt

= (φ1L+ φ2L
2)yt + εt

(1− (φ1L+ φ2L
2)yt = εt

φ(L)yt = εt

Stability requires that the roots of this polyno-
mial in the lag operator have modulus greater



than one. If φ1 = 3/4, φ2 = 1/4 then the model
is

(1− 3/4L− 1/4L2)yt = εt

If we evaluate the function at L = 1, it equals
zero. The polynomial φ(L) may be factored
into (1−L)(1 + 1/4L), which has roots of +1
and -4. The root of +1 is a unit root. We
could then difference the data:

(1 + 1/4L)[(1− L)yt = εt

so that we now have a first-order autoregres-
sion in the differences of yt,

∆yt = −1/4∆yt−1 + εt

which will be stable. However, merely taking
differences may not render a model stable; if
we have the model

(1 + 3L− 4L2)yt = εt

the lag polynomial factors into (1−L)(1+4L).
The differences of yt are not a stable autore-
gressive process, since they have a coefficient



of 4. The model is unstable in both levels and

first differences.

Let us now consider how this works in the mul-

tivariate domain of a VAR. The condition for

stability in a multivariate system can be stated

in terms of the characteristic polynomial,

|π1 − λI| = 0

All eigenvalues (roots) of this polynomial must

have moduli less than one. For instance, if

π1 =

(
5/8 1/2
1/4 5/8

)
Then we seek the roots of the polynomial

(5/8− λ)2 − 1/8 = 0

(0.978− λ)(0.271− λ) = 0

with real roots of 0.978 and 0.271. This VAR

is stable. If on the other hand the (2,2) ele-

ment of π1 = 2/3 rather than 5/8, the VAR



would have roots of (1, 7/24), and would there-
fore fail to meet the stability condition. The
Stata command varstable may be used after
estimation of a VAR to evaluate the stability
properties of the system.

We can always rewrite a 2nd, 3rd, ... order
VAR system in first order form. E.g.,

yt = µ+ π1yt−1 + π2yt−2 + εt

can be rewritten as the first order system(
yt
yt−1

)
=

(
µ
0

)
+

(
π1 π2
I 0

)(
yt−1
yt−2

)
+

(
εt
0

)
and the stability condition can be evaluated
by examining the dynamic matrix of this first
order system and calculating its eigenvalues.

Given that the dynamic matrix is square but
non-symmetric, it need not have real eigenval-
ues; there may be one or more complex conju-
gate pairs. If so, we must evaluate their mod-
uli (square root of the sum of squares of the



real and imaginary parts of the eigenvalues).

We will see an example of this below. In a dy-

namic system, complex eigenvalues give rise to

cycles, while real eigenvalues imply monotonic

behavior.

VARs come in three flavors: reduced form, re-

cursive and structural. We have considered the

reduced form VAR in which only lagged values

of the dependent variables (and possibly ex-

ogenous variables) appear on the right hand

side. The difficulty with reduced form VARs

is that the error terms in the equations will in

general be correlated across equations. This

makes difficult the notion of tracing out the

effects of a one-unit shock to one equation,

since in the data such a shock will generally

be correlated with shocks to the other equa-

tions. This is usually dealt with by performing

a Choleski factorization of the error covariance

matrix into upper triangular form, which es-

sentially orthogonalizes the innovations. That



is, the new innovations are uncorrelated by

construction with each other. This approach

comes with a cost: the resulting computations

of the shocks’ effects is sensitive to the order

of the equations in the VAR. A Choleski fac-

torization of the equations listed in a different

order will yield different results.

The second approach to VARs, recursive es-

timation, constructs the error terms in each

equation to be uncorrelated with errors in the

prior equations. Here, too, we must choose a

causal ordering. Consider a three-variable VAR

in inflation, the unemployment rate and the in-

terest rate, in that order. The inflation rate, as

the first equation, is modeled as a pure reduced

form. In the unemployment rate equation, we

include the lagged values of all variables plus

current inflation. In the third equation, we in-

clude the lagged values of all variiables plus

the current values of inflation and the unem-

ployment rate. This is equivalent to stating



that inflation has a contemporaneous effect on

unemployment, but not vice versa, and that

inflation and unemployment have contempo-

raneous effects on the interest rate, but not

vice versa. The results of analyzing a recursive

VAR will thus depend on the causal ordering

chosen. With N variables in the VAR, there

are N ! possible orderings.

The third flavor of VAR is the structural VAR

or SVAR. Here we use economic theory to sort

out the contemporaneous relationships between

the variables. For instance, we may assume

that the Fed reacts to contemporaneous de-

viations of inflation and unemployment from

their target values by adjusting the current pe-

riod’s interest rate via a Taylor rule. The Fed’s

behavior could also be modeled as forward-

looking, reacting to forecasts of inflation and

unemployment over several quarters’ horizon.

Granger causality



One concept often applied in VAR analysis is
Granger causality: do lagged values of one
variable (y1) help us to predict the current val-
ues of another variable (y2) after the past val-
ues of y2 have been controlled for? If they do,
then we say that y1 Granger-causes y2, and
vice versa. In the absence of Granger causality,
past values of y1 are not systematically related
to the current value of y2. We can determine
whether there are significant effects using a
“block F” test of the coefficients on lagged y1
in the y2 equation of a VAR. The Stata com-
mand vargranger conducts tests for Granger
causality following estimation of a VAR.

Impulse response functions

A second tool used to analyze the VAR’s im-
plications is the impulse response function, or
IRF . A pth-order VAR can be written, using
the lag operator L, as:

(I − π1L− π2L
2 − . . .− πpLp)yt = µ+ εt



If the VAR satisfies the stability conditions,
then we may compute the inverse of the lag
polynomial and rewrite the system:

yt = (I − π1L− π2L
2 − . . .− πpLp)−1 (µ+ εt)

which expresses yt as an infinite moving av-
erage (MA(∞)) of the entire history of the
ε process. The IRF is then the sequence of
derivatives

∂yi,t+s

∂εjt

for i, j = 1, N and s > 0. These derivatives
trace out the response of current and future
values of each of the variables to a one-unit
increase in the current value of one of the
VAR errors under the assumption that this er-
ror returns to its expected value of zero in
subsequent periods and that all other errors
are equal to zero. There will be N2 such sets
of derivatives, since they are defined for each
combination of dependent variable and inno-
vation. If we consider a reduced form VAR



in which the Choleski decomposition has been
applied to the error covariance matrix, we have
an orthogonalized IRF in which the original
VAR innovations (ε1, . . . , εN) have been decom-
posed into a set of uncorrelated components
(u1, . . . , uN). The OIRF is then the set of
derivatives

∂yi,t+s

∂ujt

which express the dynamic multipliers of the
system to a set of individual shocks which can
be considered, in turn, as independent of the
other shocks. A suite of Stata commands
named irf... are available to estimate IRFs
and OIRFs after VAR estimation, and present
them in either tabular or graphical form.

Forecast error variance decompositions

The third tool commonly employed in VAR
analysis is the forecast error variance decom-
position (FEV D). This is a form of accounting



that evaluates the percentage of the variance

of the error made in forecasting a variable in

the VAR due to a specific shock at a given

horizon. The forecast error variance decom-

position is like a partial R2 for the forecast er-

ror, given a forecast horizon. It expresses the

importance of each type of shock in the fore-

cast errors encountered, in-sample, for short,

medium and longer-term forecasts. The fevd

option on Stata commands can be used to gen-

erate FEVDs in tabular or graphical form.

Vector error correction models

Consider a set of y variables which are deter-

mined to possess unit roots. We could formu-

late a VAR in first differences of the variables:

∆yt = µ+ π∗1∆yt−1 + ε∗t

But such a formulation provides no informa-

tion about the relationship between the level



of the variables in the VAR, and it is this as-

pect on which economic theory is usually the

most informative.

An alternative arises when the variables in yt
are cointegrated: that is, there is a linear com-

bination of the I(1) variables in yt that is itself

I(0). So the I(0) variables that may be mod-

eled include not only the first differences of the

variables but the cointegrating combinations

formed from the I(1) variables. When k > 2

there may be more than one linear combina-

tion of I(1) variables that is stationary, each of

which is a candidate regressor. A model in first

differences that encompasses not only past dif-

ferences but past disequilibria between the level

variables is capable of representing not only

short-run responses but also long-run relation-

ships. This model is known as the vector er-

ror correction model, or VECM, as proposed

by Engle and Granger (1987). If the k-vector



of variables yt are cointegrated (CI(1,1)) then

there exists an error correction representation

of the general form:

∆yt = αzt−1 + Γ1∆yt−1 + Γ2∆yt−2 + . . .

+Γp∆yt−(p−1) + ε∗t

where zt−1 = β′yt−1 are the r linear cointegrat-

ing combinations among the k variables, with

β is the k × r matrix of cointegrating vectors.

The long-run or equilibrium relationships among

the levels of the variables are captured by the

cointegrating combinations, zt−1 = β′yt−1. Nonzero

values of zt−1 indicate lagged disequilibria which

are eradicated by the adjustment coefficients

in α, a k × r matrix of coefficients. Each col-

umn of α is associated with one of the r sta-

tionary cointegrating combinations. Short-run

dynamic adjustments are captured by nonzero

values of the elements in Γi.



In Stata, there is a suite of commands named

vec... which are used to estimate and ana-

lyze VECMs. In a model containing more than

two yt variables, the Engle–Granger regression

can detect the existence of cointegration, but

cannot establish the dimension of the cointe-

grating space: the parameter r above, indicat-

ing the number of cointegrating vectors. In a

k-variable system, there can be up to (k − 1)

cointegrating vectors. Methods developed by

Johansen and Juselius are used to test for the

dimensionality of the cointegrating space (in

Stata, the vecrank command).


