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Chapters 4–5:

Properties of LS and IV estimators

We now consider the least squares estimator

from the statistical viewpoint, rather than as

merely an algebraic curve-fitting tool, return-

ing to the assumptions that we spelled out in

earlier presentations of the least squares ap-

proach.

The least squares method can be motivated by

several of its advantages: including, of course,

its ease of computation. Least squares, like

many of the methods we use in econometrics,

is a generalized method of moments (GMM)

estimator, motivated by a set of orthogonal-

ity conditions on population moments. Let x



be the vector of independent variables in the
population regression function, which may be
stochastic or nonstochastic. We assume that
these variables are exogenous: in statistical
terms, that the population errors are orthogo-
nal to the independent variables: E[ε|x] = 0. If
this conditional mean is zero, the covariance is
also zero, and we have a vector of K moment
conditions: one for each independent variable.
Those moment conditions may be written as

E[xε] = E[x(y − x′β)] = 0,

or

E[xy] = E[xx′]β.

This is a population relationship on the mo-
ments of the variables. A method of moments
estimator replaces population moments with
consistent estimates derived from the sample.
The normal equations of least squares, (X ′X)b =
X ′y may be written as1
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in which we estimate the population moments

as the average of the sample moments over

the n observations of the sample. Therefore,

the least squares estimator may be considered

as a method of moments estimator, in which

the population relationship is reflected by that

methodology applied to the sample.

We can also motivate the use of least squares

as a solution to the problem of finding an op-

timal linear predictor: x′γ. The mean squared

error of this predictor is

MSE = E[y − x′γ]2

which may be decomposed as

MSE = E[y − E[y|x]]2 + E[E[y|x]− x′γ]2

in which the first term does not contain γ.

Minimizing MSE thus only involves the sec-

ond term. The first order condition for this



problem will lead us to the same population

expression as above:

E[xy] = E[xx′]γ

which leads to the same least squares esti-

mator as that for β above. Thus, the least

squares estimator solves the optimal linear pre-

dictor problem: even without specification of

the form of the conditional mean function E[y|x],

since we did not use the assumption of linearity

in the above derivation.

Unbiasedness of least squares

The LS estimator is unbiased:

b = (X ′X)−1X ′y

b = (X ′X)−1X ′(Xβ + ε)

b = β + (X ′X)−1X ′ε

Taking expectations of this expression, we find

that E[b|X] = E[b] = β, since by the assump-

tion of orthogonal regressors (exogeneity), the



expectation of X ′ε is zero. For any particular

set of observations X the least squares estima-

tor has expectation β. If we average over the

possible values of X (in the case where X is

stochastic) the unconditional mean of b is β as

well.

Best linear unbiased estimation

To discuss the precision of the LS estimators,

we may consider X as a matrix of fixed con-

stants in order to derive the sampling variance

of b. Alternatively, we can perform the analysis

conditional on X, and average over the possi-

ble values of X as above. Returning to the

definition of the LS estimator,

b = (X ′X)−1X ′(Xβ + ε) = β + (X ′X)−1X ′ε.

Since we can write b = β + Aε, where A =

(X ′X)−1X ′, b is a linear function of the dis-

turbances, and is thus a linear estimator; from



the above, we may also write b = Ay, so that

the LS estimator is a linear function of the de-

pendent variable. Since we have established

unbiasedness, we may state that the LS b is

a linear, unbiased estimator. What about its

covariance matrix? Given exogeneity of the X

variables and our assumption on spherical dis-

turbances,

V ar[b|X] = E[(b− β)(b− β)′|X]

= E[(X ′X)−1X ′εε′X(X ′X)−1|X]

= (X ′X)−1X ′E[εε′|X]X(X ′X)−1

= (X ′X)−1X ′(σ2I)X(X ′X)−1

= σ2(X ′X)−1.

Let us consider a more general approach to

computing a minimum–variance linear unbiased

estimator of β. Let b0 = Cy be another linear,

unbiased estimator of β, which implies

E[Cy|X] = E[(CXβ + Cε)|X) = β,



which implies that CX = I. The covariance

matrix of b0 can be found, using the above

derivation, as σ2CC′. Let

D = C − (X ′X)−1X ′,

so Dy = (b0 − b). Then

V ar[b0|X] = σ2
[
(D + (X ′X)−1X ′)(D + (X ′X)−1X ′)′

]
Since

CX = DX + (X ′X)−1(X ′X) = I,

DX = 0, and

V ar[b0|X] = σ2(X ′X)−1 + σ2DD′,

we find that the variance of any linear, unbi-

ased estimator of β equals the variance of the

LS estimator, V ar[b], plus a positive semidef-

inite matrix. The matrix D contains the dif-

ferences between the elements of the arbitrary

estimator b0 and the LS estimator b. Iff those

differences are uniformly zero, the variance of



b0 will be minimized; but if that is so, b0 = b.

For all other choices of b0, the estimator will

be less precise than the corresponding LS es-

timator. Thus, b is the minimum variance lin-

ear unbiased estimator of β: the Gauss-Markov

theorem, stating that b is “BLUE”: the Best

Linear Unbiased Estimator. The theorem also

states that if we seek to estimate w′β, where w

is an arbitrary vector of constants, the BLUE

of w′β will be w′b.

Estimating σ2(X ′X)−1

In order to test hypotheses about β or to form

confidence intervals, we need a sample esti-

mate of the covariance matrix

V ar[b|X] = σ2(X ′X)−1,

in particular, the population parameter σ2. In

the least squares approach, unlike the maxi-

mum likelihood approach to the problem, we



do not generate an estimate of σ2 in the op-
timization. Since σ2 is the expected value of
ε2i and ei is an estimate of εi, by analogy we
might calculate

σ̂2 =
1

n

n∑
i=1

e2
i

which is, indeed, the maximum likelihood es-
timator of σ2. But the least squares residu-
als, although consistent estimates of the cor-
responding εi, are imperfect estimates of their
population counterparts in that we have re-
placed β with its unbiased estimate, b:

ei = yi − x′ib = εi − x′i(b− β)

Although the expected value of ei is εi, that
does not necessarily hold for the expected value
of the squares. In matrix form,

e = My = M [Xβ + ε] = Mε,

since MX = 0. An estimator based on the
residual sum of squares is then

e′e = ε′Mε



with expected value

E[e′e|X] = E[ε′Mε|X]

The quantity ε′Mε is a scalar, thus equal to its

trace, and

E[tr(ε′Mε)|X] = E[tr(Mεε′)|X]

Since M is a function of X, this can be written

as

tr(ME[εε′|X]) = tr(Mσ2I) = σ2tr(M)

Since we know that

tr(I −X(X ′X)−1X ′)

= tr(In)− tr[(X ′X)−1(X ′X)]

= n−K

We find that E[e′e|X] = (n−K)σ2, so that an

unbiased estimator of σ2 will be

s2 =
e′e

n−K



and the standard error of regression, its posi-

tive square root, is s. We can now also calcu-

late the estimated variance–covariance matrix

of the estimated parameters:

Est.V ar[b|X] = s2(X ′X)−1,

and the positive square roots of the diagonal

elements of this matrix are the estimated stan-

dard errors si of the regression parameters bi.

Normality and simple hypothesis testing

Thus far, we have not used the assumption

of normality: even in deriving estimates of the

precision of the LS coefficients above, we did

not invoke normality. But to make use of those

estimated standard errors, we must impose a

specific distributional assumption: that the el-

ements of b are distributed multivariate Nor-

mal.



How might we test an hypothesis about a spe-

cific coefficient? Assuming normality,

z =
bk − βk√
σ2Skk

where Skk is the kth element on the main diag-

onal of (X ′X)−1. If we could compute this ex-

pression, z would have a standard Normal dis-

tribution under H0 : bk = β0
k . Using s2 rather

than σ2, we can derive a feasible test statistic:

(n−K)s2

σ2
=
e′e

σ2
=
[
ε

σ

]′
M

[
ε

σ

]
is an idempotent quadratic form in a standard

normal vector ε
σ, which will have a χ2 distribu-

tion with tr(M) = (n−K) degrees of freedom.

We may prove that this quadratic form is in-

dependent of the expression in s2. That is,

if ε is normally distributed, the least squares

coefficient vector b is statistically independent

of the residual vector e and all functions of e,

including s2.



Since a Student t–distributed variable is the ra-

tio of a standard normal variate to the square

root of a χ2 random variable which has been

divided by its degrees of freedom, a bit of al-

gebra will lead us to

tn−K =
bk − βk√
s2Skk

in which we have essentially replaced σ2 with

its consistent estimate s2. The resulting test

statistic is distributed Student t with (n −K)

degrees of freedom under H0. In particular,

the ratio of the estimated coefficient to its es-

timated standard error is distributed t under

the null hypothesis that the population coeffi-

cient equals zero. Likewise, we may construct

a α–percent confidence interval for βk as

Pr(bk − tα/2sbk ≤ βk ≤ bk + tα/2sbk) = 1− α

where (1−α) is the desired level of confidence,

and tα/2 is the appropriate critical value from



the t distribution with (n−K) degrees of free-

dom.

How might we test the hypothesis that the re-

gression as a whole is significant: in a model

with a constant term, a joint test of the hy-

pothesis that all regressors’ slopes are zero?

The ANOVA F statistic may be written as a

transformation of the R2 value:

FK−1
n−K =

R2/(K − 1)

(1−R2)/(n−K)

which will have a Fisher F distribution under

that null hypothesis. In later discussions, we

will consider alternative joint hypotheses on

combinations or subsets of the regression pa-

rameters.



Collinearity

Although the OLS estimator is minimum vari-

ance in the class of linear, unbiased estima-

tors of the population parameters, that vari-

ance may still be unacceptably large under cer-

tain circumstances: such as a “high degree”

of collinearity. If two regressors are perfectly

correlated, of course, their sampling variances

go to infinity, since the inverse matrix that en-

ters the expression for their sampling variances

cannot be calculated. What if that correla-

tion is high, or in general, what if there are

near–linear dependencies in the regressor ma-

trix? When this is encountered, we may find

that some data points have a great deal of

“leverage”: small changes in the data matrix

may cause large changes in the parameter es-

timates. Although the overall fit of the regres-

sion (as measured by R2 or R̄2) may be very



good, the coefficients may have very high stan-
dard errors, and perhaps even incorrect signs
or implausibly large magnitudes.

These are all understandable consequences of
near–linear dependencies in the regressor ma-
trix. If we consider a k–variable regression
model containing a constant and (k−1) regres-
sors, we may write the kth diagonal element of
(X ′X)−1 as:

1

(1−R2
k)Skk

where R2
k is the R2 from the regression of vari-

able k on all other variables in the model, and
Skk is the variation in the kth variable about
its mean. The estimated variance of the kth

coefficient estimate is s2 times this quantity.
Observations about this expression:

• The greater the correlation of xk with the
other regressors (including the constant term),



cet.par., the higher will be the estimated

variance;

• The greater the variation in xk about its

mean, cet. par., the lower will be the esti-

mated variance;

• The better the overall fit of the regression,

the lower will be the estimated variance.

This expression is the rationale for the so–

called V IF , or variance inflation factor, (1 −
R2
k)−1. The V IFk measures the degree to which

the variance has been inflated due to the non–

orthogonality of regressor k. Another measure,

a summary for the regression equation, is the

condition number of X ′X, which can be ex-

pressed as the positive square root of the ra-

tio of the largest to the smallest eigenvalue



of the matrix. Since a matrix which is near–

computationally singular will have at least one

very small eigenvalue, the condition number of

such a matrix will be large (relative to the value

of unity that would apply for I). Belsley, Kuh

and Welsch (BKW) have written the seminal

work on such regression diagnostics, and they

suggest that the condition number should be

calculated from a transformed data matrix in

which each regressor has unit length. A rule of

thumb would suggest that a condition number

in excess of 20 might be cause for concern.

But just as there is no objective measure of

how small the determinant of X ′X might be to

trigger instability in the estimates, it is difficult

to come up with a particular value that would

indicate a problem. One conclusion should be

clear: the statement that “these estimates are

flawed by collinearity among the regressors” is

hardly sensible if the model fits well and its

coefficient estimates are acceptably precise.



Some illustrations of the effects of contrived

collinearity may be viewed in the accompany-

ing handout. A number of these techniques,

as well as several of BKW’s proposed measures

of “influential observations”, may be found in

the Stata documentation under “regression di-

agnostics.”

Large–sample properties of OLS and IV esti-

mators

To consider the asymptotic properties of least

squares estimators, we leave the DGP for X

unspecified: it may include any mixture of con-

stants and random variables generated inde-

pendently of the DGP producing ε. Two cru-

cial assumptions:

• (xi, εi), i = 1, . . . , n is a sequence of inde-

pendent observations;



• plim X ′X
n = Q, a positive definite matrix

The OLS estimator may then be written as

b = β +

(
X ′X

n

)−1(
X ′ε

n

)
.

Presuming the existence of Q−1,

plim b = β +Q−1 plim

(
X ′ε

n

)
The plim of the last term may be written as

the sample average of xiεi = wi, and each term

in that average has expectation zero. For non-

stochastic x, this follows from the marginal

distribution of ε; for stochastic x, the indepen-

dence of the two DGPs provides the result.

Thus, we may write

plim b = β +Q−1 plim w̄.

Likewise, we may use the spherical distribution

of ε to derive the conditional variance of this



expression:

V ar[w̄|X] = E[w̄w̄′|X] =

(
σ2

n

)(
X ′X

n

)
,

or

V ar[w̄] =

(
σ2

n

)
E

(
X ′X

n

)
The variance will collapse to zero if the ex-

pectation converges to a constant matrix, so

that the leading scalar will dominate as n in-

creases. Under this condition—on the “well–

behavedness” of the regressor matrix—the limit

of the variance of w̄ is zero. Since the mean

of w̄ is identically zero and its variance con-

verges to zero, we may state that w̄ converges

in mean square to zero:

plim
x′ε

n
= 0,

or

plim b = β.



The assumptions we have used above are often

too restrictive in the case of time–series data

with trending variables and polynomials in the

regressors. In that case, a weaker set of as-

sumptions about X, the so–called Grenander

conditions, state that the regressors are suit-

ably “well-behaved” to lead to consistency of

the OLS estimator. Those conditions are likely

to be satisfied in empirical datasets.

Asymptotic normality of the OLS estimator

Our result on the plim of b allows us to write

√
n(b− β) =

(
X ′X

n

)−1( 1
√
n

)
X ′ε

Since this inverse matrix has a plim equal to

Q−1, the limiting distribution of the above quan-

tity is that of Q−1
(

1√
n

)
X ′ε; we need to con-

sider the limiting distribution of
√
n(w̄−E[w̄]),

where the expectation is zero. What then is



the limiting distribution of
√
nw̄? Assuming in-

dependence of the observations, w̄ is the aver-

age of n independent random vectors wi = xiεi
with means zero and variances (given spheri-

cal disturbances) of σ2Qi. Thus the variance of√
nw̄ is σ2Q̄n = σ2

n [Q1 +Q2 + · · ·+Qn]. As long

as this sum is not dominated by any term and

the regressors are “well behaved” as discussed

above, the limit of this quantity is σ2Q. Thus if

xiεi are n independent vectors distributed with

mean zero and finite variance σ2Q, we may

write (
1
√
n

)
X ′ε d→ N [0, σ2Q].

We may premultiply this quantity by Q−1, which

then leads to the result that
√
n(b− β)

d→ N [0, σ2Q−1],

or in terms of b itself,

b
a∼ N

[
β,
σ2

n
Q−1

]
.



The importance of this result is that if the

regressors are “well behaved” and the obser-

vations are independent, then the asymptotic

normality of the OLS estimator does not de-

pend on normality of the disturbances, but

rather on the central limit theorems used in the

derivation. It will, of course, follow if the dis-

turbances themselves are distributed normally.

To make this operational, we must estimate

the two quantities in the covariance matrix:

σ2 by e′e
(n−K) and (1/n)Q−1 by (X ′X)−1. The

former estimator can be demonstrated to be

consistent, since it can be written

s2 =
1

(n−K)
[ε′ε− ε′X(X ′X)−1X ′ε]

=
n

n−K

ε′ε
n
−
(
ε′X

n

)(
X ′X

n

)−1(
X ′ε

n

) .
Since the leading constant has a plim of one,

and the second term in the brackets converges



to zero, we are concerned about the conver-

gence of the first term. Under the weak con-

ditions of finite moments of ε (two if they

are identically distributed), we have that plim

s2 = σ2, giving us the appropriate estimator

for the asymptotic covariance matrix of b.

The delta method

The delta method may be used to generate

estimated variances and covariances for func-

tions of b. Let f(b) be a set of J continuous

and continuously differentiable functions of b,

and define

C(b) =
∂f(b)

∂b′

be the J×K matrix whose jth row is the vector

of derivatives of the jth function with respect

to b′. We can then write

plim f(b) = f(β)



and

plim C(b) =
∂f(β)

∂β′
= Γ.

Using a linear Taylor series,

f(b) = f(β) + Γ(b− β) + . . .

If plim b = β, the higher-order terms are negli-

gible as n→∞. So we can write

f(b)
a∼ N

[
f(β),Γ

σ2

n
Q−1Γ′

]
.

so that the operational estimated asymptotic

covariance matrix will be

C[s2(X ′X)−1]C′.

If any of the J functions are nonlinear, the un-

biasedness of b may not carry over to f(b).

Nevertheless, f(b) will be a consistent estima-

tor of f(β), with a consistent estimate of the

asymptotic covariance matrix. This is the ra-

tionale for the widely–employed delta method,

implemented in Stata as the testnl command.



Asymptotic efficiency

What about asymptotic efficiency, the large–
sample counterpart of the Gauss–Markov re-
sult? In finite samples, we can prove that OLS
is BLUE under a set of assumptions on X and
ε (which do not require normality of the ε). As
we noted in examining maximum likelihood es-
timators, OLS is also a MLE if ε is distributed
multivariate normal. Since MLEs are asy. effi-
cient among consistent and asy. normally dis-
tributed estimators, we can state that OLS
estimators are asy. efficient in the presence of
normally distributed ε. Conversely, if the error
distribution is not normal, this result of asy.
efficiency does not follow.

Heterogeneity in xi and dependent observa-
tions

The assumptions made to establish these asymp-
totic results include exogeneity of the regres-
sors (violations of which we will discuss in the



next section), spherically distributed errors, and

independence of the observations. The latter

assumption is often called into question in the

context of a panel, or longitudinal data set,

where we have multiple observations on each

of a number of units. It is surely likely that the

xs will be correlated across observations within

individuals: indeed, some may be constant for

each individual. The regressors are likely to in-

clude both stochastic terms (such as family in-

come, or firms’ revenues) and non–stochastic

regressors such as an individual “fixed effect”.

The asymptotics for such a setup are often

described as “large n, small T”: that is, very

commonly we have a large number of obser-

vations (individuals, families, or firms) with a

time–series of modest length on each individ-

ual. In this case, we hold T fixed and let n in-

crease, treating each individual’s observations

as a unit. The conditions necessary to estab-

lish convergence are those related to n → ∞.



This is the setup, for instance, underlying the

“dynamic panel data” estimator of Arellano

and Bond, which is commonly applied to panels

of firm–level balance sheet and income state-

ment data. There are, of course, instances

of “small n, large T” panels, for which the

asymptotics consider holding n fixed and let-

ting T increase; and in the econometric theory

underlying a number of panel unit–root tests,

there are asymptotics in which both n and T

are allowed to increase.

A second cause for violation of the assumption

of independence is that of regressors which are

prior values of the dependent variable: that

is, lagged dependent variables. We continue

to assume that the disturbances are i.i.d., but

even with this assumption, it is obvious that

the regressor vectors are correlated across ob-

servations. Since every observation yt is de-

pendent on the history of the disturbances,



we cannot assume strict exogeneity: by con-

struction, current ε is correlated with future x.

The finite–sample results presented earlier no

longer hold in this case of stochastic regres-

sors which cannot be considered independent

of the error process, past, present and future;

only asymptotic results remain.

To generate asymptotic results for this case,

we must modify the assumption of strict exo-

geneity with

E[εt|xt−s] = 0 ∀s ≥ 0.

This states that the disturbance at period t

is an innovation, uncorrelated with the past

history of the x process. It cannot be uncor-

related with the future of the process, since it

will become part of those future values. We

further must assume that the series in x are

stationary (at least in terms of covariance sta-

tionarity), which assumes that they have finite,



non–time–varying second moments which de-

pend only on the temporal displacement be-

tween their values; and that the autocorrela-

tion of the series is damped (so that the de-

pendence between observations declines with

the temporal displacement, and sample esti-

mates of the autocovariance function will be

suitable estimates of their population counter-

parts). The combination of these conditions is

equivalent to stating that the regressors are

stationary and ergodic. Under these condi-

tions, consistency of the OLS estimator can

be proven.

Next, we consider the appropriate strategy if

the assumption of exogeneity of the regressors

is untenable: for instance, in the context of a

simultaneous equations model.



The method of instrumental variables

The equation to be estimated is, in matrix no-

tation,

y = Xβ + u,E(uu′) = Ω (1)

with typical row

yi = Xiβ + ui (2)

The matrix of regressors X is n × K, where

n is the number of observations. The error

term u is distributed with mean zero and the

covariance matrix Ω is n×n. Four special cases

for Ω that we will consider are:

Homoskedasticity:Ω = σ2I



Heteroskedasticity:Ω =


σ2

1 0
.. .

σ2
i . . .

0 σ2
n



Serial correlation:Ω =


σ2

σ21 σ2

σ31 σ32 σ2

... ... ... . . .
σn1 σn2 . . . σ2



Clustering:Ω =


Σ1 0

.. .
Σm

. . .
0 ΣM


where Σm indicates an intra-cluster covariance



matrix. For cluster m with t observations, Σm

will be t × t. Zero covariance between obser-

vations in the M different clusters gives the

covariance matrix Ω, in this case, a block-

diagonal form.

Some of the regressors are endogenous, so that

E(Xiui) 6= 0. We partition the set of regres-

sors into [X1 X2], with the K1 regressors X1

assumed under the null to be endogenous, and

the (K−K1) remaining regressors X2 assumed

exogenous.

The set of instrumental variables is Z and is

n × L; this is the full set of variables that

are assumed to be exogenous, i.e., E(Ziui) =

0. We partition the instruments into [Z1 Z2],

where the L1 instruments Z1 are excluded in-

struments, and the remaining (L− L1) instru-

ments Z2 ≡ X2 are the included instruments /

exogenous regressors:



Regr X = [X1 X2] = [X1 Z2] = [Endog Exog]

Inst Z = [Z1 Z2] = [Excluded Included]

The order condition for identification of the
equation is L ≥ K; there must be at least as
many excluded instruments as there are en-
dogenous regressors. If L = K, the equation
is said to be exactly identified; if L > K, the
equation is overidentified.

Denote by PZ the projection matrix Z(Z′Z)−1Z′.
The instrumental variables or two-stage least
squares (2SLS) estimator of β is

β̂IV = (X ′Z(Z′Z)−1Z′X)−1X ′Z(Z′Z)−1Z′y =

(X ′PZX)−1X ′PZ y



The asymptotic distribution of the IV estima-
tor under the assumption of conditional ho-
moskedasticity can be written as follows. Let

QXZ = E(X ′iZi)

QZZ = E(Z′iZi)

and let û denote the IV residuals,

û ≡ y −Xβ̂IV
Then the IV estimator is asymptotically dis-
tributed as β̂IV

A∼ N(β, V (β̂IV )) where

V (β̂IV ) =
1

n
σ2(Q′XZQ

−1
ZZQXZ)−1

Replacing QXZ, QZZ and σ2 with their sample
estimates

QXZ =
1

n
X ′Z

QZZ =
1

n
Z′Z

σ̂2 =
û′û

n



we obtain the estimated asymptotic variance–

covariance matrix of the IV estimator:

V (β̂IV ) = σ̂2(X ′Z(Z′Z)−1Z′X)−1 = σ̂2(X ′PZX)−1

Note that some packages, including Stata’s

ivreg, include a degrees–of–freedom correction

to the estimate of σ̂2 by replacing n with n−L.

This correction is not necessary, however, since

the estimate of σ̂2 would not be unbiased any-

way (cf. Greene, 2000, p. 373.)

The Generalized Method of Moments

The standard IV estimator is a special case

of a Generalized Method of Moments (GMM)

estimator. The assumption that the instru-

ments Z are exogenous can be expressed as

E(Ziui) = 0. The L instruments give us a set

of L moments,

gi(β̂) = Z′iûi = Z′i(yi −Xiβ̂)



where gi is L×1. The exogeneity of the instru-

ments means that there are L moment condi-

tions, or orthogonality conditions, that will be

satisfied at the true value of β:

E(gi(β)) = 0

Each of the L moment equations corresponds

to a sample moment, and we write these L

sample moments as

g(β̂) =
1

n

n∑
i=1

gi(β̂) =
1

n

n∑
i=1

Z′i(yi −Xiβ̂) =
1

n
Z′û

The intuition behind GMM is to choose an es-

timator for β that solves g(β̂) = 0.

If the equation to be estimated is exactly iden-

tified, so that L = K, then we have as many

equations—the L moment conditions—as we

do unknowns—the K coefficients in β̂. In this

case it is possible to find a β̂ that solves g(β) =

0, and this GMM estimator is in fact the IV es-

timator.



If the equation is overidentified, however, so
that L > K, then we have more equations than
we do unknowns, and in general it will not be
possible to find a β̂ that will set all L sam-
ple moment conditions to exactly zero. In this
case, we take an L × L weighting matrix W

and use it to construct a quadratic form in the
moment conditions. This gives us the GMM
objective function:

J(β̂) = ng(β̂)′Wg(β̂)

A GMM estimator for β is the β̂ that minimizes
J(β̂). Deriving and solving the K first order
conditions

∂J(β̂)

∂β̂
= 0

yields the GMM estimator:

β̂GMM = (X ′ZWZ′X)−1X ′ZWZ′y (3)

Note that the results of the minimization, and
hence the GMM estimator, will be the same for



weighting matrices that differ by a constant of

proportionality (we will make use of this fact

below). Beyond this, however, there are as

many GMM estimators as there are choices of

weighting matrix W .

What is the optimal choice of weighting ma-

trix? Denote by S the covariance matrix of the

moment conditions g:

S =
1

n
E(Z′uu′Z) =

1

n
E(Z′ΩZ)

where S is an L × L matrix. The general for-

mula for the distribution of a GMM estimator

is

V (β̂GMM) =
1

n
(Q′XZWQXZ)−1(Q′XZWSWQXZ)(Q′XZWQXZ)−1(4)

The efficient GMM estimator is the GMM es-

timator with an optimal weighting matrix W ,

one which minimizes the asymptotic variance

of the estimator. This is achieved by choosing



W = S−1. Substitute this into Equation (3)

and Equation (4) and we obtain the efficient

GMM estimator

β̂EGMM = (X ′ZS−1Z′X)−1X ′ZS−1Z′y

with asymptotic variance

V (β̂EGMM) =
1

n
(Q′XZS

−1QXZ)−1

Note the generality (the “G” of GMM) of the

treatment thus far; we have not yet made any

assumptions about Ω, the covariance matrix of

the disturbance term. But the efficient GMM

estimator is not yet a feasible estimator, be-

cause the matrix S is not known. To be able

to implement the estimator, we need to esti-

mate S, and to do this, we need to make some

assumptions about Ω.



GMM and heteroskedastic errors

Let us start with one of the most commonly

encountered cases in cross–section analysis: het-

eroskedasticity of unknown form, but no clus-

tering. We need a heteroskedasticity–consistent

estimator of S. Such an Ŝ is available by using

the standard “sandwich” approach to robust

covariance estimation. Denote by Ω̂ the diag-

onal matrix of squared residuals:

Ω̂ =


û2

1 0
.. .

û2
i . . .

0 û2
n


where ûi is a consistent estimate of ui. Then

a consistent estimator of S is

Ŝ =
1

n
(Z′Ω̂Z)

This works because, although we cannot hope

to estimate the n diagonal elements of Ω with



only n observations, they are sufficient to en-

able us to obtain a consistent estimate of the

L× L matrix S.

The û used for the matrix can come from any

consistent estimator of β; efficiency is not re-

quired. In practice, the most common choice

for estimating û is the IV residuals. This gives

us the algorithm for the feasible efficient two-

step GMM estimator, as implemented in ivreg2,gmm2s.

1. Estimate the equation using IV.

2. Form the residuals û. Use these to form

the optimal weighting matrix Ŵ = Ŝ−1 =(
1
n(Z′Ω̂Z)

)−1
.

3. Calculate the efficient GMM estimator β̂EGMM

and its variance-covariance matrix using the



estimated optimal weighting matrix.This yields

β̂EGMM = (X ′Z(Z′Ω̂Z)−1Z′X)−1 ×
X ′Z(Z′Ω̂Z)−1Z′y

with asymptotic variance

V (β̂EGMM) = (X ′Z(Z′Ω̂Z)−1Z′X)−1

GMM, IV and homoskedastic vs. heteroskedas-

tic errors

Let us now see what happens if we impose the

more restrictive assumption of conditional ho-

moskedasticity on Ω. This means the S matrix

simplifies:

S =
1

n
E(Z′ΩZ) = σ21

n
E(Z′Z)

The expectation term can be estimated by 1
nZ
′Z,

but what about σ2? As we noted above, the



GMM estimator will be the same for weight-
ing matrices that differ by a constant of pro-
portionality. We can therefore obtain the ef-
ficient GMM estimator under conditional ho-
moskedasticity if we simply ignore σ2 and use
as our weighting matrix

Ŵ =
(

1

n
Z′Z

)−1

Substituting into Equation (3), we find that it
reduces to the formula for the IV estimator in
Equation (3). To obtain the variance of the
estimator, however, we do need an estimate of
σ2. If we use the residuals of the IV estimator
to calculate σ̂2 = 1

nû
′û, we obtain

Ŝ = σ̂21

n
Z′Z

Finally, if we now set

Ŵ = Ŝ−1 =
(
σ̂21

n
Z′Z

)−1

and substitute into the formula for the asymp-
totic variance of the efficient GMM estimator



we find that it reduces to the formula for the

asymptotic variance of the IV estimator. In ef-

fect, under the assumption of conditional ho-

moskedasticity, the (efficient) iterated GMM

estimator is the IV estimator, and the itera-

tions converge after one step. It is worth not-

ing that the IV estimator is not the only such

efficient GMM estimator under conditional ho-

moskedasticity. Instead of treating σ̂2 as a pa-

rameter to be estimated in a second stage,

what if we return to the GMM criterion func-

tion and minimize by simultaneously choosing

β̂ and σ̂2? The estimator that solves this min-

imization problem is in fact the Limited Infor-

mation Maximum Likelihood estimator (LIML).

In effect, under conditional homoskedasticity,

the continuously updated GMM estimator is

the LIML estimator. Calculating the LIML es-

timator does not require numerical optimiza-

tion methods; it can be calculated as the so-

lution to an eigenvalue problem. The latest



version of ivreg2 (Baum, Schaffer and Still-

man) supports LIML and k–class estimation

methods.

What are the implications of heteroskedastic-

ity for the IV estimator? Recall that in the

presence of heteroskedasticity, the IV estima-

tor is inefficient but consistent, whereas the

standard estimated IV covariance matrix is in-

consistent. Asymptotically correct inference is

still possible, however. In these circumstances

the IV estimator is a GMM estimator with a

sub–optimal weighting matrix, and hence the

general formula for the asymptotic variance of

a general GMM estimator The IV weighting

matrix Ŵ remains, what we need is a consis-

tent estimate of Ŝ. This is easily done, using

exactly the same method employed in two–step

efficient GMM. First, form the “hat” matrix

Ω̂ using the IV residuals, and use this matrix

to form the Ŝ matrix. Substitute this Ŝ, the



(sub–optimal) IV weighting matrix Ŵ and the

sample estimates of QXZ and QZZ into the

general formula for the asymptotic variance of

a GMM estimator (4), and we obtain an es-

timated variance–covariance matrix for the IV

estimator that is robust to the presence of het-

eroskedasticity:

Robust V (β̂IV ) = (X ′PZX)−1 ×
(X ′Z(Z′Z)−1(Z′Ω̂Z)(Z′Z)−1Z′X)(X ′PZX)−1

This is in fact the usual Eicker–Huber–White

“sandwich” robust variance–covariance matrix

for the IV estimator, available from ivreg or

ivreg2 with the robust option.

We may also deal with non–independence in

the error distribution by using a kernel esti-

mator to produce autocorrelation–consistent

standard errors. The “Newey–West” standard

errors are HAC, that is, heteroskedasticity- and

autocorrelation-consistent. If one does not doubt



the homoskedasticity assumption, but wants to

deal with autocorrelation, one should use the

“AC” correction without the “White” piece.

Thus, the latest ivreg2 allows selection of H,

AC, or HAC standard errors by combining the

robust, bandwidth and kernel options. One may

use the Bartlett kernel, as do Newey and West,

but a number of alternative kernel estimators

are available that will likewise produce a posi-

tive definite estimated covariance matrix. See

help ivreg2 for details.

Testing overidentifying restrictions in 2SLS and

GMM

The parameters of a structural equation are

said to be identified when we have sufficient

instruments to produce unique estimates from

the IV estimator. The identification status of

an equation is determined by two conditions.



When econometricians speak of the identifica-

tion of a structural equation, it is shorthand

for being able to uniquely identify the param-

eters in that equation. The first, the order

condition, requires that we count endogenous

regressors and available instruments. In order

to use the 2SLS estimator the matrix (Z′X)

must be square and invertible. If Z is to have

k columns, we must have sufficient variables

to fill in the columns corresponding to each

endogenous regressor. The order condition

is necessary but not sufficient for identifica-

tion. The second, the rank condition, involves

the rank of the resulting instrument matrix

Z′Z.That matrix must be of full rank `. The

rank condition is both necessary and sufficient

for identification. We first focus on the order

condition.

An exactly identified equation can be directly

estimated by instrumental variables. An overi-

dentified equation must be estimated with 2SLS,



while an underidentified equation cannot be es-

timated by any technique. Although it might

sound like overidentification is a nuisance to

be avoided, it is actually preferable to work-

ing with an exactly-identified equation. If the

equation is exactly identified, its point and in-

terval estimates may be quite dependent on

the specific instrument used. The estimates

might change considerably if a different valid

instrument was employed. Furthermore, re-

call that the first essential property of an in-

strument is statistical independence from the

disturbance process. Although we cannot test

the validity of that assumption directly, we can

assess the adequacy of instruments in an overi-

dentified context with a test of overidentifying

restrictions.

In such a test, the residuals from an instru-

mental variables regression are regressed on



all exogenous variables: both included exoge-

nous regressors and excluded instruments. Un-

der the null hypothesis that all instruments

are uncorrelated with u, a Lagrange Multiplier

(LM) statistic of the N ×R2 form will not ex-

ceed the critical point on a χ2 (r) distribution,

where r is the number of overidentifying re-

strictions: the number of excess instruments.

If we reject this hypothesis, then we cast doubt

on the suitability of the instrument set. One

or more of the instruments do not appear to

be uncorrelated with the disturbance process.

This Sargan or Basmann test (Sargan (1958),

Basmann (1960)) is available in Stata as the

overid command (Baum, Schaffer, Stiillman

(2003)). This command can be installed from

ssc for use after estimation with ivreg.

Just as in the case of 2SLS the validity of the

overidentifying restrictions imposed on a GMM

estimator can be tested. The test, which can



and should be performed as a standard diag-

nostic in any overidentified instrumental vari-

ables model, has a null hypothesis of correct

model specification and the overidentifying re-

strictions. correct model specification and the

orthogonality conditions. A rejection calls ei-

ther or both of those hypotheses into question.

In the context of GMM, the overidentifying

restrictions may be tested by the commonly

employed J statistic of Hansen (1982). This

statistic is merely the value of the GMM ob-

jective function evaluated at the efficient GMM

estimator bEGMM . Under the null,

J(bEGMM) = N g(b)′Ŝ−1g(b)
A∼ χ2

`−k (5)

In the case of non-i.i.d. errors, the matrix Ŝ

is estimated using the two-step methods de-

scribed above and the J statistic becomes

J(bFEGMM) = eZ′(Z′Ω̂Z)−1Ze′ A∼ χ2
`−k (6)



The J statistic is asymptotically distributed as

χ2 with degrees of freedom equal to the num-

ber of overidentifying restrictions ` − k rather

than the total number of moment conditions

`. In effect, k degrees of freedom are spent in

estimating the coefficients β. Hansen’s J is the

most common diagnostic utilized in GMM esti-

mation to evaluate the suitability of the model.

A rejection of the null hypothesis implies that

the instruments do not satisfy the orthogonal-

ity conditions required for their employment.

This may be either because they are not truly

exogenous, or because they are being incor-

rectly excluded from the regression. The J

statistic is calculated and displayed by ivreg2

when the gmm2s or robust options are specified.

Just as IV is a special case of GMM, Sargan’s

statistic is a special case of Hansen’s J under

the assumption of conditional homoskedastic-

ity. Thus if we use the IV optimal weighting



matrix together with the expression for J we

obtain

Sargan’s statistic =
1

σ̂2
û′Z(Z′Z)−1Z′û =

û′Z(Z′Z)−1Z′û

û′û/n
=
û′PZû

û′û/n

The Hansen–Sargan tests for overidentifica-

tion presented above evaluate the entire set

of overidentifying restrictions. In a model con-

taining a very large set of excluded instruments,

such a test may have very little power. Another

common problem arises when the researcher

has prior suspicions about the validity of a sub-

set of instruments, and wishes to test them.

In these contexts, a GMM distance or “difference–

in–Sargan” statistic, sometimes called the C

statistic, may usefully be employed.The C test

allows us to test a subset of the original set of



orthogonality conditions. The statistic is com-

puted as the difference between two Sargan

statistics (or, for efficient GMM, two J statis-

tics): that for the (restricted, fully efficient) re-

gression using the entire set of overidentifying

restrictions, versus that for the (unrestricted,

inefficient but consistent) regression using a

smaller set of restrictions, in which a specified

set of instruments are removed from the set.

For excluded instruments, this is equivalent to

dropping them from the instrument list. For

included instruments, the C test hypothecates

placing them in the list of included endoge-

nous variables: in essence, treating them as en-

dogenous regressors. The C test, distributed

χ2 with degrees of freedom equal to the loss

of overidentifying restrictions (i.e., the number

of suspect instruments being tested), has the

null hypothesis that the specified variables are

proper instruments.



Although the C statistic can be calculated as
the simple difference between the Hansen–Sargan
statistics for two regressions, this procedure
can generate a negative test statistic in finite
samples. In the IV context this problem can
be avoided and the C statistic guaranteed to
be non-negative if the estimate of the error
variance σ̂2 from the original (restricted, more
efficient) IV regression is used to calculate the
Sargan statistic for the unrestricted IV regres-
sion as well. The equivalent procedure in the
GMM context is to use the Ŝ matrix from the
original estimation to calculate both J statis-
tics. More precisely, Ŝ from the restricted esti-
mation is used to form the restricted J statis-
tic, and the submatrix of Ŝ with rows/columns
corresponding to the unrestricted estimation is
used to form the J statistic for the unrestricted
estimation.

The C test is conducted in ivreg2 by specifying
the endog option, and listing the endogenous



variables to be considered as potentially exoge-

nous (that is, now considered as instruments).

The equation as specified is compared with

an equation with a larger set of instruments,

augmented by those listed as endog(), which

imposes additional orthogonality conditions on

the estimation. The C test evaluates whether

those additional conditions are rejected by the

data. The Hansen–Sargan overidentification

test is an “omnibus” test for the failure of any

of the instruments to satisfy the orthogonality

conditions, but at the same time requires that

the investigator believe that at least some of

the instruments are valid.

Alternatively, a C test may be constructed by

specifying the orthog option, and listing the in-

struments (either included or excluded) to be

challenged. The equation must still be identi-

fied with these instruments either removed or

reconsidered as endogenous if the C statistic is



to be calculated. Note that if the unrestricted

equation is exactly identified, the Hansen–Sargan

statistic for the unrestricted equation will be

zero and the C statistic will coincide with the

Hansen–Sargan statistic for the original (re-

stricted) equation, and this will be true irre-

spective of the instruments used to identify the

unrestricted estimation.

Testing the relevance of instruments

An instrumental variable must not be corre-

lated with the equation’s disturbance process

and it must be highly correlated with the in-

cluded endogenous regressors. We may test

the latter condition by examining the fit of the

first stage regressions. The first stage regres-

sions are reduced form regressions of the en-

dogenous regressors X1 on the full set of in-

struments Z. The relevant test statistics here

relate to the explanatory power of the excluded



instruments Z1 in these regressions. A statistic

commonly used, as recommended by Bound,

Jaeger, Baker (1995) is the R2 of the first-

stage regression with the included instruments

partialled out. Alternatively, this may be ex-

pressed as the F -test of the joint significance

of the Z1 instruments in the first-stage regres-

sion. However, for models with multiple en-

dogenous variables, these indicators may not

be sufficiently informative.

To illustrate the pitfalls facing empirical re-

searchers here, consider the following simple

example. You have a model with two endoge-

nous regressors and two excluded instruments.

One of the two excluded instruments is highly

correlated with each of the two endogenous re-

gressors, but the other excluded instrument is

just noise. Your model is basically underiden-

tified. You have one valid instrument but two

endogenous regressors. The Bound et al. F -

statistics and partial R2 measures from the two



first-stage regressions will not reveal this weak-

ness. Indeed, the F -statistics will be statisti-

cally significant, and without further investiga-

tion you may not realize that the model cannot

be estimated in this form. To deal with this

problem of instrument irrelevance, either addi-

tional relevant instruments are needed or one

of the endogenous regressors must be dropped

from the model. The statistics proposed by

Bound et al. are able to diagnose instrument

relevance only in the presence of a single en-

dogenous regressor. When multiple endoge-

nous regressors are used, other statistics are

required.

One such statistic has been proposed by Shea

(1997): a partial R2 measure that takes the

intercorrelations among the instruments into

account.For a model containing a single en-

dogenous regressor, the two R2 measures are

equivalent. The distribution of Shea’s par-

tial R2 statistic has not been derived, but it



may be interpreted like any R2. As a rule of

thumb, if an estimated equation yields a large

value of the standard (Bound et al.) partial

R2 and a small value of the Shea measure, you

should conclude that the instruments lack suf-

ficient relevance to explain all the endogenous

regressors. Your model may be essentially un-

deridentified. The Bound et al. measures and

the Shea partial R2 statistic are provided by

the first or ffirst options of the ivreg2 com-

mand.

A more general approach to the problem of

instrument relevance was proposed by Ander-

son (1984) and discussed in Hall, Rudebusch,

Wilcox (1996). Anderson’s approach consid-

ers the canonical correlations of the X and Z

matrices. These measures, ri, i = 1, . . . . , k

represent the correlations between linear com-

binations of the k columns of X and linear com-

binations of the ` columns of Z. The squared



canonical correlations may be calculated as the

eigenvalues of (X ′X)−1(X ′Z)(Z′Z)−1(Z′X). If

an equation to be estimated by instrumental

variables is identified from a numerical stand-

point, all k of the canonical correlations must

be significantly different from zero. Ander-

son’s likelihood ratio test has the null hypoth-

esis that the smallest canonical correlation is

zero, and assumes that the regressors are dis-

tributed multivariate Normal. Under the null,

the test statistic is distributed χ2 with (`−k+1)

degrees of freedom, so that it may be calcu-

lated even for an exactly-identified equation.

A failure to reject the null hypothesis calls the

identification status of the estimated equation

into question. The Anderson statistic is dis-

played in ivreg2’s standard output.

The canonical correlations between X and Z

may also be used to test a set of instruments

for redundancy following Hall and Peixe (2000).



In an overidentified context with ` ≥ k, if some

of the instruments are redundant then the large-

sample efficiency of the estimation is not im-

proved by including them. The test statistic is

a likelihood ratio statistic based on the canon-

ical correlations with and without the instru-

ments being tested. Under the null hypothesis

that the specified instruments are redundant,

the statistic is distributed as χ2 with degrees

of freedom equal to the number of endoge-

nous regressors times the number of instru-

ments being tested. Like the Anderson test,

the redundancy test assumes that the regres-

sors are distributed multivariate Normal. This

test is available in ivreg2 with the redundant()

option.



Durbin–Wu–Hausman tests for endogeneity in

IV estimation

Many econometrics texts discuss the issue of

“OLS vs. IV” in the context of the Durbin–

Wu–Hausman (DWH) tests, which involve es-

timating the model via both OLS and IV ap-

proaches and comparing the resulting coeffi-

cient vectors. In the Hausman form of the test,

a quadratic form in the differences between the

two coefficient vectors, scaled by the precision

matrix, gives rise to a test statistic for the null

hypothesis that the OLS estimator is consis-

tent and fully efficient.

Denote by β̂c the estimator that is consistent

under both the null and the alternative hy-

potheses, and by β̂e the estimator that is fully

efficient under the null but inconsistent if the

null is not true. The Hausman (1978) specifi-

cation test takes the quadratic form



H = n(β̂c − β̂e)′D−(β̂c − β̂e)
where

D =
(
V (β̂c)− V (β̂e)

)
(7)

and where V (β̂) denotes a consistent estimate

of the asymptotic variance of β, and the oper-

ator − denotes a generalized inverse.

A Hausman statistic for a test of endogeneity

in an IV regression is formed by choosing OLS

as the efficient estimator β̂e and IV as the in-

efficient but consistent estimator β̂c. The test

statistic is distributed as χ2 with K1 degrees

of freedom, this being the number of regres-

sors being tested for endogeneity. The test

is perhaps best interpreted not as a test for

the endogeneity or exogeneity of regressors per

se, but rather as a test of the consequence of

employing different estimation methods on the

same equation. Under the null hypothesis that



OLS is an appropriate estimation technique,
only efficiency should be lost by turning to IV;
the point estimates should be qualitatively un-
affected.

There are a variety of ways of conducting a
DWH endogeneity test in Stata for the stan-
dard IV case with conditional homoskedastic-
ity. Three equivalent ways of obtaining the
Durbin flavor of the Durbin–Wu–Hausman statis-
tic are:

1. Estimate the less efficient but consistent
model using IV, followed by the command
estimates store iv. Then estimate the fully
efficient model by OLS (or by IV if only a
subset of regressors is being tested for en-
dogeneity), followed by hausman, sigmamore.

2. Estimate the fully efficient model using ivreg2,
specifying the endogenous regressors to be
tested in the endog option.



3. Estimate the less efficient but consistent

model using ivreg, then use ivendog to con-

duct an endogeneity test. This program

will take as its argument a varlist consist-

ing of the subset of regressors to be tested

for endogeneity; if the varlist is empty, the

full set of endogenous regressors is tested.

The latter two methods are of course more

convenient than the first, as the test can be

done in one step.


