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PROBLEM SET 1: SOLUTIONS

Point Distribution:

a), ¢), d): 3 points each
b), e), f): 2 points each
g)

The normal equations for this model are given by
(X'X)b - X'y =0,

which implies that
X'(Xb-y)=0 = X'(—e)=0

Thus, ), zie; = 0. Also, since the first column consists of 1s, ) . e; = 0.

b) Since the first normal equation is
na + Z ;b = Z Vi
i i

we immediately have that
a=79y—bx

c¢) The second normal equation is



Substituting a from above, we have

7 7 7 7 imi
Then,
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d) S(b) =y'y — 2y’Xb + b’X’Xb and so
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Now, n >0 and ), JJZQ > 0, since the full rank condition requires that z; # x;Vi # j. Then,
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2) Prove: (y — Xc)'(y — Xc) — (y — Xb)'(y — Xb) = (¢ — b)’X'X(c — b)
Proof:
(y — Xc)(y — Xc) — (y = Xb)(y = Xb) = y'y — yXc - /Xy + /X'Xc - y'y + yXb + b’ X'y — b’X'Xb
= b'X'X(b - c) + (b — ¢)X'Xb + ¢'X'Xc — b'X'Xb
= —b'X'Xc + b'X'Xb — ¢/X'Xb + ¢'X'Xc
= (' = b)X'Xc - (¢’ - b)X'Xb
= (c—b)X'X(c —b)



where we use X'y = X’Xb in the third line.

3) Proof: Let My = (I — Z(Z'Z)"'Z") = Myy = ez. Similarly, define Mx, so that Mxy = ex. Now,
notice that My = I — Z(Z'Z)"'Z' = I — XP(P'X'XP)"'P'X'. But, since P, P, and (X'X) are invertible,
(P'X'XP)"' = P-{(X'X)" (P")~\. Then, My = I — XPP~Y(X'X)"Y(P)"'P'X' = — X(X'X)"'X' = My.
Thus, ez = Mzy = Mxy = ex.

Thus, we can conclude that changing the units of measurement of the independent variables (i.e. postmultiply-
ing by a diagonal P matrix) has no effect on the fit.

4) The matrix M° = I — 1(¢/t)~11 subtracts the means from the observations. Suppose only X has the means
subtracted. Then, b = (X'MYMOX)~'X'M%. But, since M is symmetric and idempotent, we have b =
(X'M°X)~1 X' (M%), which is the same as subtracting the means from both X and y. Thus, coefficients of the
regressors are not affected. Now, suppose only y is “de-meaned.” Then, b= (X' X)~1X'MO%. But M =y — 7,
sob= (X'X)"'X'(y—qt) = b— (X'X)"  X'ju. Thus, in general, b # b, and so we will not get the same coefficients
if only y is transformed, unless the mean of the dependent variable in the sample is 0.

5)Letw;=(1 Y; Py; Py Psj) = X=(1Y P; P, Ps). Then, E; = Xb; +¢;, where j € {d,n, s},
so b; = (X'X)"'X'E;. Now, Y = E;+ E,, + Es. Therefore, Zj b = Zj(X’X)*lX’Ej = (X'X)*lX’Zj E; =
(X’X)"'X'Y. But since Y is a column in X, we will have an exact fit if we ran a regression of ¥ on X i.e.
0
1
by = (X’X)71X'Y = [ 0|, where the coefficient for the regressor Y is 1 and all the others are 0. Then, since
0
0
y =, j b;, the sum of the expenditure coefficients is 1 and all other coefficients sum to 0.

6) We have E[N] = E[D] = E[Y] = 0 and var(N) = var(D) = var(Y) = 1. Also, var(C) = var(N + D) =
var(N) + var(D) + 2cov(N, D) = 2(1 4+ cov(N,D)). In the regression of D on Y, the slope is 0.4 which
implies cov(D,Y)/var(Y) = cov(D,Y) = 0.4. In the regression of C on Y, the slope is 0.8 which implies
cov(C,Y ) /var(Y) = cov(C, Y) 0.8. Note that cov(C,Y) = cov(N + D,Y) = cov(N,Y) + cov(D,Y) =
cov(N,Y)+ 04 = 0.8 = cov(N,Y) = In the regression of C' on N the slope is 0.5 which implies that
cov(C,N)/var(N) = cov(C,N) = 0.5. Note that cov(C,N) = cov(N + D,N) = var(N) + cov(N,D) = 1+
cov(N, D) = 0.5 = cov(N, D) = —0.5. We can also compute cov(C, D) = cov(N + D, D) = cov(N, D) +var(D) =
—0.541=0.5 as well as var(C) = 2(1 + cov(N, D)) = 2(1 — 0.5) = 1. Now, in the regression of C on D, the sum

of squared residuals is given by:
e => (Ci-C)P?-v*> (D;i— D)



We can rewrite the above expression (using the fact that all moments are computed using 1/(n — 1) as the divisor)
as:

= (n—1) (var(C) — (cov(C, D) /var(D))? var(D))

=20(1 — (0.5)?) = 20(0.75) = 15

7) For the estimator to be unbiased, it must be that ¢; + ¢y = 1, since E[f] = ¢1E[01] + ¢2E[02] = (¢1 + ¢2)6, where
0 is the true parameter value.

Thus, we need to minimize the variance of ¢16; + (1 — ¢1)02. Now, v = varld] = var[eif; + (1 — ¢1)bs] =
v+ (1—c1)?vg+cr(1— cl)cov(§1, ég), where v; = var [91] Since, 6, and 6y are independent, the covariance term
is equivalent to 0. Thus, v = c2vy + (1 —¢1)?vq. Then, (%’1 = 2c1v1 —2(1 —¢1)vy = 0, which implies that ¢; = Ulzjfvz
and cp = vlilvz'

8) Let ¢ =E[Q|P]. Then, the expected profit II = Pq— Cq = P(a + bP) — C(a + bP), where C is the constant
marginal cost. Profit is maximized when %—2 =01ie a4+ 2bP —bC =0. Thus, P* = % — 35+ Given that C' = 10,
we have P* =5 — g and so the optimal quantity is given by § + 5b.

. regress Q P

Source | SS daf MS Number of obs = 15
————————————— T F( 1, 13) = 12.52
Model | 197.088735 1 197.088735 Prob > F = 0.0036
Residual | 204.644598 13 15.7418922 R-squared = 0.4906
————————————— Fom Adj R-squared = 0.4514
Total | 401.733333 14 28.6952381 Root MSE = 3.9676
Q | Coef. Std. Err t P>|t] [95% Conf. Intervall
_____________ +________________________________________________________________
P | -.8405832 .2375627 -3.54 0.004 -1.353806 -.3273602
cons | 20.76912 2.821568 7.36 0.000 14.67349 26.86475
. lincom _cons / 2 + 5 x P
(1) 5P+ .5 _cons =0
Q | Coef. Std. Err. t P>|t]| [95% Conf. Intervall



(1) | 6.181644 .5276531 11.72  0.000 5.041719 7.32157

Thus, the expected value of the profit-maximizing output is 6.18, with the 95% confidence interval [5.042, 7.322].

9) a)

. tsset Year,yearly
time variable: Year, 1953 to 2004

. // per capita gas consump, income
. gen gaspc = GasExp/(Gasp*(Pop/1e6))

. // logs
. gen lngaspc = log(gaspc)

. local allreg Income Gasp PNC PUC PPT PD PN PS

. // reg of part a
. reg gaspc ‘allreg’ Year

Source | SS df MS Number of obs = 52
————————————— Attt F(C 9, 42) = 530.82
Model | 56.7083042 9 6.30092268 Prob > F = 0.0000
Residual | .49854905 42 .011870215 R-squared = 0.9913
————————————— Sttt Adj R-squared = 0.9894
Total | 57.2068532 51 1.121703 Root MSE = .10895

gaspc | Coef. Std. Err t P>|t| [95% Conf. Intervall
_____________ o
Income | .0002157 .0000518 4.17 0.000 .0001113 .0003202

Gasp | -.0110838 .0039781 -2.79 0.008 -.019112  -.0030557

PNC | .0005774 .0128441 0.04 0.964 -.0253432 .0264979

PUC | -.0058746 .0048703 -1.21 0.234 -.0157033 .0039541

PPT | .0069073 .0048361 1.43 0.161 -.0028524 .016667

PD | .0012289 .0118818 0.10 0.918 -.0227495 .0252072

PN | .0126905 .012598 1.01 0.320 -.0127333 .0381142



PS | -.0280278 .0079962 -3.51 0.001 -.0441649 -.0118907
Year | .0725037 .0141828 5.11  0.000 .0438816 .1011257
_cons | -140.4213 27.19985 -5.16  0.000 -195.3128 -85.5298

One would expect the coefficient of the price of gasoline (Gasp) to be negatively correlated, since demand should be
downward sloping, which it is. For income (Income) one would expect a positive coefficient because of the income
effect; the regression produces this expected result. One might expect that the coefficient of the price of new
cars (PNC) to be negative, since cars and gasoline are complements, but the regressions suggests otherwise (note
however that the coefficient isn’t significantly different from 0). It is possible that better fuel efficieny of newer
cars more than offset the increased price of the newer cars. The coefficient of the price of public transportation
(PPT) is sensible, since public transportation and gasoline are substitutes. Cars are durables, so (PD) poses the
same puzzle as (PNC); the same explanation above for this puzzle might apply.

b) Notice that the 95% confidence interval for PUC is a subset of the 95% confidence interval of PNC. Thus,
the null hypothesis that the true parameter value of the coefficients of PUC and PNC are the same cannot be
rejected.

. test PNC

PUC

(1) PNC - PUC = O

0.24
0.6233

F( 1, 42)
Prob > F

. est store a

. // elasticities: compute at t=2004
. mean ‘allreg’ Year if Year==2004

Mean estimation Number of obs = 1

Mean Std. Err. [95% Conf. Interval]



Gasp | 123.901 0
PNC | 133.9 0
PUC | 133.3 0
PPT | 209.1 0
PD | 114.8 0
PN | 172.2 0
PS | 222.8 0
Year | 2004 0
. mat x2004 = e(b)
. est restore a
(results a are active now)
. mfx compute, eyex at(x2004)
Elasticities after regress
y = Fitted values (predict)
= 6.1726971
variable | ey/ex Std. Err Z P>|z| [ 95% C.I ] X
_________ +____________________________________________________________________
Income | .9476599 .2263 4.19 0.000 .504127 1.39119 27113
Gasp | -.2224796 .08093 -2.75 0.006 -.381102 -.063857 123.901
PNC | .0125245 .2786 0.04 0.964 -.533521 .55857 133.9
PUC | -.1268632 .10488 -1.21 0.226 -.332432 .078706 133.3
PPT | .2339837 .16441 1.42 0.155 -.08826 .556228 209.1
PD | .0228545 .22098 0.10 0.918 -.410256 .455965 114.8
PN | .3540265 .35281 1.00 0.316 -.337474 1.04553 172.2
PS | -1.011648 .29332 -3.45 0.001 -1.58654 -.436759 222.8
Year | 23.53872 4.63929 5.07 0.000 14.4459 32.6316 2004

The own price elasticity is -0.2225 (and significantly different from 0), the income elasticity is 0.9477 (and sig-
nificantly different from 0) and the cross- price elasticity with PPT is 0.2340 (but not significantly different from 0).

d)

. foreach v of local allreg {



gen 1ln‘v’ = log(‘v’)
local logreg "‘logreg’ 1ln‘v’"

W N

. reg 1lngaspc ‘logreg’

Source | SS df MS Number of obs = 52
------------- +-——— F( 8, 43) = 249.60
Model | 2.84726323 8 .355907904 Prob > F = 0.0000
Residual | .061313662 43 .001425899 R-squared = 0.9789
————————————— ittt Adj R-squared = 0.9750
Total | 2.9085769 51 .05703092 Root MSE = .03776
lngaspc | Coef Std. Err t P>|t| [95% Conf. Intervall
_____________ e e e e e e
InIncome | 1.883045 .223034 8.44 0.000 1.433254 2.332836
1nGasp | .0735984 .0676117 1.09 0.282 -.0627536 .2099504

1nPNC | 3772717 .30747 1.23 0.226 -.2428007 .997344

1nPUC | -.334021 .0996132 -3.35 0.002 -.5349102 -.1331318

1nPPT | .1404593 .1683464 0.83 0.409 -.1990435 .4799621

1nPD | .6422717 .1817908 3.53 0.001 .2756555 1.008888

1nPN | -.492239 .3269502 -1.51 0.139 -1.151597 .167119

1nPS | -.6288652 .4383016 -1.43 0.159 -1.512785 .2550542

_cons | -15.79148 2.35185 -6.71 0.000 -20.53443 -11.04852

The own price elasticity is 0.07360, the income elasticity is 1.883, and the cross- price elasticity with PPT is 0.1405.

The own price elasticity is quite different from part ¢) and positive, implying an upward sloping demand curve.
However, the parameter estimate is not statistically significantly different from 0. The income elasticity estimate is
almost twice as high as in part c¢). It is likely that the elimination of the time-trend from the log-log regression has
resulted in the income growth rate “bleeding” into the estimate for the effect of income. The cross-price elasticity
with the price of public transportation (PPT), while somewhat similar in value from the linear regression above,
is also not significantly different from 0.

The log model tries to fit a constant elasticity function to the data, whereas the previous calculation of the
elasticities was carried out at the mean point of the graph assuming a linear structural equation. If the elasticity
varies with the dependent variable, then one should not expect that the two models produce the same elasticities.

It isn’t clear which specification is appropriate.



e)

. corr ‘logreg’ Year

(obs=52)

InIncome
InGasp
1nPNC
1nPUC
1nPPT
1nPD
1nPN
1nPS
Year

1InPNC

1nPUC

1nPS

Year

InIncome InGasp
1.0000
0.9448 1.0000
0.9473 0.9667 1
0.9599 0.9674 O
0.9790 0.9665 O
0.9536 0.9776 O
0.9754 0.9839 0
0.9809 0.9742 O
0.9923 0.9471 O

.0000
.9940
.9891
.9932
.9900
.9902
.9631

O O O O O

.0000
.9910
.9945
.9902
.9912
.9683

1.0000
0.9864
0.9942
0.9985
0.9878

1.0000
0.9923
0.9886
0.9571

1.0000
0.9979
0.9809

1.0000
0.9885

1.0000

It appears that there is a large degree of positive correlation among all the variables. One cannot however conclude
that we have a multicollinearity problem, not without further investigation. That the log-log regression produces
a positive own-price elasticity is particularly concerning. One can estimate the Variance Inflation Factor (VIF) by
regressing the suspect variable (InGasp) on the other regressors used in the original log-log regression.

. regress InGasp lnIncome 1nPNC 1nPUC 1nPPT 1nPD 1nPN 1nPS Year

Source

Model
Residual

23.2012964 8 2.90016205
.311204941 43 .007237324

Number of obs

F(

8,

43)

Prob > F
R-squared

Adj R-squared
Root MSE

52
400.72
0.0000
0.9868
0.9843
.08507

InIncome
1nPNC
1nPUC
1nPPT

-3.037339
-3.621651
-.2974968
-1.137444

-1.7125 .6569362
-2.27155 .6694628
.1843208 .2389148
-.368804 .3811388

-.3876623
-.92145
.6661385
.3998356



1nPD | .5337328 . 7292676 0.73 0.468 -.9369755 2.004441
1nPN | 2.218312 .6676095 3.32 0.002 .8719495 3.564675
1nPS | .7517911 .9898355 0.76 0.452 -1.244402 2.747985
Year | .0066669 .0211907 0.31 0.755 -.0360683 .0494021
cons | 3.023167  37.03858 0.08 0.935 -71.67225 77.71858

The R? for the regression is very close to 1, implying a very high VIF. However, there is no critical VIF that allows
one to classify a regression as suffering from multicollinearity or not.

The easy to use command vif does this for you for all the regressors.

. vif

Variable | VIF 1/VIF
_____________ o
1nPS | 4902.30 0.000204
1nPN | 1566.09 0.000639
1nPPT | 790.87 0.001264
1nPNC | 645.15 0.001550
1nPD | 305.77 0.003270
InIncome | 216.20 0.004625
1nPUC | 192.91 0.005184
1nGasp | 75.38 0.013266
_____________ e

Mean VIF | 1086.83

The high VIFs strongly suggest that multicollinearity “problems” might exist, which is to say that the estimates
are highly sensitive to particular data points. See Greene’s discussion for more on this topic.

f) As figured out in problem 3 of this Problem Set, the units of measurement do not affect the fit of the re-
gression, but only the value of the relevant coefficients, which are scaled by the conversion factor between the two
units.

bx = (X'X) X'y
by =(Z2'2)' 7'y = (PX'XP)'P X'y =P (X' X)"Y(P) 'PX'y=P (X' X)Xy = P 'bx

However, the log model will have the same coefficients for the regressors regardless of the unit of measurement;
only the constant term will be altered by such a change of units, but not the fit. This follows from the simple
algebraic fact that In(sz) = In(s) + In(x), where s is some scaling factor (a scalar). Thus, the change in the units

10



will change the constant term in the log-log regression.
g)

. gen break = tin(1974,2004)

. ttest lngaspc, by(break)

Two-sample t test with equal variances

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall
_________ +-———————————eerrrrrrrrrrrrrrrrrrrrrrrr e e -
0 | 21 1.334769 .04365 .2000295 1.243717 1.425822
1 31 1.730146 .012755 .0710169 1.704097 1.756195
_________ +____________________________________________________________________
combined | 52 1.570475 .0331172 .2388115 1.503989 1.63696
_________ +____________________________________________________________________
diff | -.3953765 .0389887 -.4736877 -.3170653
diff = mean(0) - mean(1) t = -10.1408
Ho: diff =0 degrees of freedom = 50
Ha: diff < O Ha: diff !'= 0 Ha: diff > O
Pr(T < t) = 0.0000 Pr(|T| > |t]) = 0.0000 Pr(T > t) = 1.0000

The average value of log per capita gas consumption for period 1 is 1.3348 and for period 2 is 1.7301, with a
statistically significant increase in the value from period 1 to period 2 of 0.3954.

. // regs for each subset
. gen iota =1

. reg lngaspc ‘logreg’ Year if “break

Source | SS df MS Number of obs = 21
————————————— Rttt F( 9, 11) = 584.71
Model | .798567151 9 .088729683 Prob > F = 0.0000
Residual | .001669259 11 .000151751 R-squared = 0.9979
————————————— Fom e Adj R-squared = 0.9962
Total | .800236411 20 .040011821 Root MSE = .01232

11



lngaspc | Coef.  Std. Err. t P>t [95% Conf.
_____________ +____________________________________________________
InIncome | .6648792 .2234255 2.98 0.013 .1731229
1nGasp | -.202044 .4191071 -0.48 0.639 -1.124492
1nPNC | .5912882 .3024403 1.96 0.076 -.0743785
1nPUC | -.294078 .1420679 -2.07 0.063 -.6067674
1nPPT | -.3584459 .3104284 -1.15 0.273 -1.041694
1nPD | -.1022751 1.072572 -0.10 0.926 -2.462991
1nPN | -.0383662 .5780072 -0.07 0.948 -1.310551
1nPS | .7541618 . 7414295 1.02 0.331 -.8777136
Year | .0090829 .0184495 0.49 0.632 -.0315243
_cons | -24.22851 35.60422 -0.68 0.510 -102.5929
. mat bpre = e(b)’
. mat vpre = e(V)
. qui predict ypre if e(sample)
. est store pre
. mean ypre
Mean estimation Number of obs = 21
| Mean Std. Err. [95% Conf. Intervall
_____________ +________________________________________________
ypre | 1.334769 .0436045 1.243812 1.425727
. mean ‘logreg’ Year iota if e(sample)
Mean estimation Number of obs = 21
| Mean Std. Err. [95% Conf. Intervall
_____________ +________________________________________________
InIncome | 9.307999 .0382598 9.22819 9.387807

12

Intervall

1.156636
. 7204044
1.256955
.0186114
.3248024
2.2568441
1.233819
2.386037
.0496901
54.13584



13

InGasp | 2.973497  .0218159 2.92799 3.019005
1nPNC |  3.919241  .0123054 3.893572 3.944909
1nPUC |  3.319498  .0322032 3.252324 3.386673
1nPPT | 3.220735  .0564034 3.10308 3.338391
1nPD | 3.682407  .0184103 3.644004 3.72081
1nPN | 3.539391 .0300972 3.476609 3.602173
1nPS | 3.276916  .0479733 3.176846 3.376987
Year | 1963 1.354006 1960.176 1965.824
iota | 1 0
. mat xpre = e(b)
. reg lngaspc ‘logreg’ Year if break
Source | Ss df MS Number of obs = 31
------------- +o—m F( 9, 21) = 104.38
Model | .147993657 9  .01644374 Prob > F 0.0000
Residual | .00330819 21 .000157533 R-squared = 0.9781
————————————— F-—m Adj R-squared = 0.9688
Total | 151301846 30 .005043395 Root MSE = .01255
lngaspc | Coef.  Std. Err t P>|t| [95% Conf. Intervall]
_____________ e e e e e e e
1nIncome | .5181589  .1498427 3.46 0.002 .2065439 .8297739
lnGasp | -.0770111  .0501662 -1.54 0.140 -.1813374 .0273152
1nPNC | .6158313 .2687583 2.29 0.032 .0569178 1.174745
1nPUC | .2402007  .0938617 2.56 0.018 .0450045 .4353969
1nPPT | -.1616701 .0748211 -2.16 0.042 -.3172691 -.0060711
1nPD | -.6564543  .3175261 -2.07 0.051 -1.316786 .0038775
1nPN | .2370631  .2603476 0.91 0.373 -.3043593 . 7784855
1nPS | -.2148074 .1814829 -1.18 0.250 -.5922217 .1626069
Year | .0007693  .0052182 0.15 0.884 -.0100827 .0116212
_cons | -4.904748 9.733856 -0.50 0.620 -25.14741 15.33791
. mat bpost = e(b)’
. mat vpost = e(V)



. qui predict ypost if e(sample)

. est store post

. mean ypost

Mean estimation

Number of obs

[95% Conf.

Interval]

_____________ +-———————————e—e—r—r—r——r——rr =

ypost | 1.

730146

.0126148

1.704383

1.755909

. mean ‘logreg’ Year iota if e(sample)

Mean estimation

Number of obs

|
+
InIncome |
1nGasp |
1nPNC |
1nPUC |
1nPPT |
1nPD |
1nPN |
1nPS |
Year |
iota |

4.2413

.692742
.637867
. 765984
.616158
.709391
. 783979

1989

.031305
.0585685
.0483805
.0770827
.0969479
.0479135
.0602159
.0866703
1.632993

. 854896
.121687
.593936
.480443
.570032
.518305
.586413
.606975
1985.665

QNN O NS O NN N e

.918829

9.982762
4.360913
4.791548
4.795291
4.961936

4.71401
4.832368
4.960984
1992.335

. mat xpost = e(b)

. // first term B-0 decomp: take m as post
. mat tl = xpost*(bpost-bpre)

. // cov mtx for first term

. mat vd = vpre+vpost

14



. // std error for first term
. mat tlvar = xpost*vd*xpost’

. scalar tlse = sqrt(tivar[1,1])

. // second term
. mat t2 = (xpost-xpre)x*bpre

. // total effect

. mat t3 = t1 + t2

. mat list t1, ti("Differential due to change in coeffs")

symmetric t1[1,1]: Differential due to change in coeffs
y1

yl -.50270686

. di "Std error " tlse " approx c.i." t1[1,1]1-1.96%tlse " , " t1[1,1]+1.96%tlse
Std error .24585864 approx c.i.-.98458979 , -.02082394

. mat list t2, ti("Differential due to change in regressors")

symmetric t2[1,1]: Differential due to change in regressors
y1

yl .89808339

. mat list t3, ti("Total differential")

symmetric t3[1,1]: Total differential

y1
yl .39537652

You can verify the above results by using the decomposition command oaxaca written by Ben Jann.

. oaxaca post pre, weight(0)
(high estimates: post; low estimates: pre)
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Mean prediction 1 =
Mean prediction 2 =

1.730146
1.334769

Total Coef
W=0
explained | .8980834
unexplained | -.5027069

.2564011
.2503842

.3060407 .4847124
[95% Conf. Intervall]
.3955465 1.40062
-.9934509 -.0119628
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