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Serial correlation and heteroskedasticity in time series regressions

Chapter 12: Serial correlation and
heteroskedasticity in time series regressions

What will happen if we violate the assumption that the errors are not
serially correlated, or autocorrelated? We demonstrated that the OLS
estimators are unbiased, even in the presence of autocorrelated
errors, as long as the explanatory variables are strictly exogenous.

This is analogous to our results in the case of heteroskedasticity,
where the presence of heteroskedasticity alone does not cause bias
nor inconsistency in the OLS point estimates. However, following that
parallel argument, we will be concerned with the properties of our
interval estimates and hypothesis tests in the presence of
autocorrelation.
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Serial correlation and heteroskedasticity in time series regressions

OLS is no longer BLUE in the presence of serial correlation, and the
OLS standard errors and test statistics are no longer valid, even
asymptotically. Consider a first-order Markov error process:

ut = ρut−1 + et , |ρ| < 1 (1)

where the et are uncorrelated random variables with mean zero and
constant variance.
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Serial correlation and heteroskedasticity in time series regressions

What will be the variance of the OLS slope estimator in a simple y on x
regression model? For simplicity let us center the x series so that
x̄ = 0. Then the OLS estimator will be:

b1 = β1 +

∑T
t=1 xtut
SSTx

where SSTx is the sum of squares of the x series.
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Serial correlation and heteroskedasticity in time series regressions

In computing the variance of b1, conditional on x , we must account for
the serial correlation in the u process:
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where σ2 = Var(ut ) and we have used the fact that
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= ρjσ2 in the derivation.
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Serial correlation and heteroskedasticity in time series regressions

Notice that the first term in this expression is merely the OLS variance
of b1 in the absence of serial correlation. When will the second term
be nonzero? When ρ is nonzero, and the x process itself is
autocorrelated, this double summation will have a nonzero value.

As nothing prevents the explanatory variables from exhibiting
autocorrelation (and in fact many explanatory variables take on similar
values through time) the only way in which this second term will vanish
is if ρ is zero, and u is not serially correlated. In the presence of serial
correlation, the second term will cause the standard OLS variances of
our regression parameters to be biased and inconsistent.
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Serial correlation and heteroskedasticity in time series regressions

In most applications, when serial correlation arises, ρ is positive, so
that successive errors are positively correlated. In that case, the
second term will be positive as well. Recall that this expression is the
true variance of the regression parameter; OLS will only consider the
first term. In that case OLS will seriously underestimate the variance of
the parameter, and the t−statistic will be much too high.

If on the other hand ρ is negative, so that successive errors result from
an “overshooting” process, then we may not be able to determine the
sign of the second term, since odd terms will be negative and even
terms will be positive. Surely, though, it will not be zero. Thus the
consequence of serial correlation in the errors, particularly if the
autocorrelation is positive, will render the standard t− and F−statistics
useless.
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Serial correlation in the presence of lagged dependent variables

Serial correlation in the presence of lagged
dependent variables

A case of particular interest, even in the context of simple y on x
regression, is that where the explanatory variable is a lagged
dependent variable. Suppose that the conditional expectation of yt is
linear in its past value: E (yt |yt−1) = β0 + β1yt−1. We can always add
an error term to this relation, and write it as

yt = β0 + β1yt−1 + ut (2)
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Serial correlation in the presence of lagged dependent variables

Let us first assume that the error is “well behaved,” i.e. E (ut |yt−1) = 0,
so that there is no correlation between the current error and the lagged
value of the dependent variable. In this setup the explanatory variable
cannot be strictly exogenous, since there is a contemporaneous
correlation between yt and ut by construction.

In evaluating the consistency of OLS in this context we are concerned
with the correlation between the error and yt−1, not the correlation with
yt , yt−2, and so on. In this case, OLS would still yield unbiased and
consistent point estimates, with biased standard errors, as we derived
above, even if the u process was serially correlated.
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Serial correlation in the presence of lagged dependent variables

But it is often claimed that the joint presence of a lagged dependent
variable and autocorrelated errors, OLS will be inconsistent. This
arises, as it happens, from the assumption that the u process in (2)
follows a particular autoregressive process, such as the first-order
Markov process in (1). If this is the case, then we do have a problem of
inconsistency, but it is arising from a different source: the
misspecification of the dynamics of the model.
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Serial correlation in the presence of lagged dependent variables

If we combine (2) with (1), we really have an AR(2) model for yt , since
we can lag (2) one period and substitute it into (1) to rewrite the model
as:

yt = β0 + β1yt−1 + ρ (yt−1 − β0 − β1yt−2) + et

= β0 (1− ρ) + (β1 + ρ) yt−1 − ρβ1yt−2 + et

= α0 + α1yt−1 + α2yt−2 + et (3)

so that the conditional expectation of yt properly depends on two lags
of y , not merely one. Thus the estimation of (2) via OLS is indeed
inconsistent, but the reason for that inconsistency is that y is correctly
modelled as AR(2).
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Serial correlation in the presence of lagged dependent variables

The AR(1) model is seen to be a dynamic misspecification of (3). As is
always the case, the omission of relevant explanatory variables will
cause bias and inconsistency in OLS estimates, especially if the
excluded variables are correlated with the included variables. In this
case, that correlation will almost surely be meaningful.

To arrive at consistent point estimates of this model, we merely need
add yt−2 to the estimated equation. That does not deal with the
inconsistent interval estimates, which will require a different strategy.
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Testing for first-order serial correlation

Testing for first-order serial correlation

As the presence of serial correlation invalidates our standard
hypothesis tests and interval estimates, we should be concerned about
testing for it. First let us consider testing for serial correlation in the
k−variable regression model with strictly exogenous regressors, which
rules out, among other things, lagged dependent variables.
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Testing for first-order serial correlation

The simplest structure which we might posit for serially correlated
errors is AR(1), the first order Markov process, as given in (1). Let us
assume that et is uncorrelated with the entire past history of the u
process, and that et is homoskedastic. The null hypothesis is H0 :
ρ = 0 in the context of (1).
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Testing for first-order serial correlation

If we could observe the u process, we could test this hypothesis by
estimating (1) directly. Under the maintained assumptions, we can
replace the unobservable ut with the OLS residual vt . Thus a
regression of the OLS residuals on their own lagged values,

vt = κ+ ρvt−1 + εt , t = 2, ...T (4)

will yield a t− test. That regression can be run with or without an
intercept, and the robust option may be used to guard against
violations of the homoskedasticity assumption. It is only an asymptotic
test, though, and may not have much power in small samples.
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Testing for first-order serial correlation

A very common strategy in considering the possibility of AR(1) errors
is the Durbin–Watson test, which is also based on the OLS residuals:

DW =

∑T
t=2 (vt − vt−1)2∑T

t=1 v2
t

(5)
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Testing for first-order serial correlation

Simple algebra shows that the DW statistic is closely linked to the
estimate of ρ from the large-sample test:

DW ' 2 (1− ρ̂) (6)

ρ̂ ' 1− DW
2

The relationship is not exact because of the difference between (T − 1)
terms in the numerator and T terms in the denominator of the DW test.
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Testing for first-order serial correlation

The difficulty with the DW test is that the critical values must be
evaluated from a table, since they depend on both the number of
regressors (k) and the sample size (n), and are not unique: for a given
level of confidence, the table contains two values, dL and dU . If the
computed value falls below dL, the null is clearly rejected. If it falls
above dU , there is no cause for rejection. But in the intervening region,
the test is inconclusive. The test cannot be used on a model without a
constant term, and it is not appropriate if there are any lagged
dependent variables.
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Testing for first-order serial correlation

In the presence of one or more lagged dependent variables, an
alternative statistic may be used: Durbin’s h statistic, which merely
amounts to augmenting (4) with the explanatory variables from the
original regression. This test statistic may readily be calculated in
Stata with the estat durbinalt command.
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Testing for higher-order serial correlation

Testing for higher-order serial correlation

One of the disadvantages of tests for AR(1) errors is that they consider
precisely that alternative hypothesis. In many cases, if there is serial
correlation in the error structure, it may manifest itself in a more
complex relationship, involving higher-order autocorrelations; e.g.
AR(p). A logical extension to the test described in (4) and the Durbin
“h” test is the Breusch–Godfrey test, which considers the null of
nonautocorrelated errors against an alternative that they are AR(p).
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Testing for higher-order serial correlation Breusch–Godfrey and Q tests

This test can readily be performed by regressing the OLS residuals on
p lagged values, as well as the regressors from the original model.
The test is the joint null hypothesis that those p coefficients are all
zero, which can be considered as another T × R2 Lagrange multiplier
(LM) statistic, analogous to White’s test for heteroskedasticity.

The test may easily be performed in Stata using the estat
bgodfrey command. You must specify the lag order p to indicate the
degree of autocorrelation to be considered. If p = 1, the test is
essentially Durbin’s “h” statistic.
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Testing for higher-order serial correlation Breusch–Godfrey and Q tests

An even more general test often employed on time series regression
models is the Box–Pierce or Ljung–Box Q statistic, or “portmanteau
test,” which has the null hypothesis that the error process is “white
noise,” or nonautocorrelated, versus the alternative that it is not well
behaved.

The “Q” test evaluates the autocorrelation function of the errors, and in
that sense is closely related to the Breusch–Godfrey test. That test
evaluates the conditional autocorrelations of the residual series,
whereas the “Q” statistic uses the unconditional autocorrelations.
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Testing for higher-order serial correlation Breusch–Godfrey and Q tests

The “Q” test can be applied to any time series as a test for “white
noise,” or randomness. For that reason, it is available in Stata as the
command wntestq. This test is often reported in empirical papers as
an indication that the regression models presented therein are
reasonably specified.

Any of these tests may be used to evaluate the hypothesis that the
errors exhibit serial correlation, or nonindependence. But caution
should be exercised when their null hypotheses are rejected. It is very
straightforward to demonstrate that serial correlation may be induced
by simple misspecification of the equation. For instance, if you model a
relationship as linear when it is curvilinear, or when it represents
exponential growth, the linear form is misspecified.
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Testing for higher-order serial correlation Breusch–Godfrey and Q tests

Many time series models are misspecified in terms of inadequate
dynamics: that is, the relationship between y and the regressors may
involve many lags of the regressors. If those lags are mistakenly
omitted, the equation suffers from misspecification bias, and the
regression residuals will reflect the missing terms. In this context, a
visual inspection of the residuals is often useful.

User-written Stata routines such as tsgraph, sparl and particularly
ofrtplot should be employed to better understand the dynamics of
the regression function. Each may be located and installed with Stata’s
ssc command, and each is well documented with on-line help.
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Testing for higher-order serial correlation Breusch–Godfrey and Q tests

. summarize rs r20

Variable Obs Mean Std. Dev. Min Max

rs 526 7.651513 3.553109 1.561667 16.18
r20 526 8.863726 3.224372 3.35 17.18

. eststo, ti("OLS VCE"):regress D.rs LD.r20, vsquish

Source SS df MS Number of obs = 524
F( 1, 522) = 52.88

Model 13.8769739 1 13.8769739 Prob > F = 0.0000
Residual 136.988471 522 .262430021 R-squared = 0.0920

Adj R-squared = 0.0902
Total 150.865445 523 .288461654 Root MSE = .51228

D.rs Coef. Std. Err. t P>|t| [95% Conf. Interval]

r20
LD. .4882883 .0671484 7.27 0.000 .356374 .6202027

_cons .0040183 .022384 0.18 0.858 -.0399555 .0479921

(est1 stored)
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Testing for higher-order serial correlation Breusch–Godfrey and Q tests
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Testing for higher-order serial correlation Breusch–Godfrey and Q tests

Breusch–Godfrey and Q tests

. predict double eps, residual
(2 missing values generated)

. estat bgodfrey, lags(6)

Breusch-Godfrey LM test for autocorrelation

lags(p) chi2 df Prob > chi2

6 17.237 6 0.0084

H0: no serial correlation

. wntestq eps

Portmanteau test for white noise

Portmanteau (Q) statistic = 82.3882
Prob > chi2(40) = 0.0001
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Correcting for serial correlation with strictly exogenous regressors

Correcting for serial correlation with strictly
exogenous regressors

As OLS cannot provide consistent interval estimates in the presence of
autocorrelated errors, how should we proceed? If we have strictly
exogenous regressors (in particular, no lagged dependent variables),
we may be able to obtain an appropriate estimator through
transformation of the model.
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Correcting for serial correlation with strictly exogenous regressors

If the errors follow the AR(1) process in (1), we determine that
Var(ut ) = σ2

e/
(
1− ρ2) . Consider a simple y on x regression with

autocorrelated errors following an AR(1) process. Then simple algebra
will show that the quasi-differenced equation

(yt − ρyt−1) = (1− ρ)β0 + β1 (xt − ρxt−1) + (ut − ρut−1) (7)

will have nonautocorrelated errors, as the error term in this equation is
in fact et , by assumption well behaved.
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Correcting for serial correlation with strictly exogenous regressors

This quasi-differencing transformation can only be applied to
observations 2, ...,T , but we can write down the first observation in
static terms to complete that, plugging in a zero value for the time-zero
value of u.

This extends to any number of explanatory variables, as long as they
are strictly exogenous; we just quasi-difference each, and use the
quasi-differenced version in an OLS regression.

cfb (BC Econ) ECON2228 Notes 10 2014–2015 30 / 54



Correcting for serial correlation with strictly exogenous regressors

How can we employ this strategy when we do not know the value of ρ?
It turns out that the feasible generalized least squares (GLS) estimator
of this model merely replaces ρ with a consistent estimate, ρ̂. The
resulting model is asymptotically appropriate, even if it lacks small
sample properties.

We can derive an estimate of ρ from OLS residuals, or from the
calculated value of the Durbin–Watson statistic on those residuals.
Most commonly, if this technique is employed, we use an algorithm
that implements an iterative scheme, revising the estimate of ρ in a
number of steps to derive the final results.
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Correcting for serial correlation with strictly exogenous regressors

One common methodology is the Prais–Winsten estimator, which
makes use of the first observation, transforming it separately. It may be
used in Stata via the prais command. That same command may also
be used to employ the Cochrane–Orcutt estimator, a similar iterative
technique that ignores the first observation. In a large sample, it will
not matter if one observation is lost. This estimator can be executed
using the corc option of the prais command.

We do not expect these estimators to provide the same point estimates
as OLS, as they are working with a fundamentally different model. If
they provide similar point estimates, the FGLS estimator is to be
preferred, as its standard errors are consistent. However, in the
presence of lagged dependent variables, more complicated estimation
techniques are required.
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Correcting for serial correlation with strictly exogenous regressors

An aside on first differencing. An alternative to employing the feasible
GLS estimator, in which a value of ρ inside the unit circle is estimated
and used to transform the data, would be to first difference the data:
that is, transform the left and right hand side variables into differences.
This would indeed be the proper procedure to follow if it was suspected
that the variables possessed a unit root in their time series
representation.

If the value of ρ in (1) is strictly less than 1 in absolute value, first
differencing approximates that value, since differencing is equivalent to
imposing ρ = 1 on the error process. If the process’s ρ is quite different
from 1, first differencing is not as good a solution as applying the FGLS
estimator.
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Correcting for serial correlation with strictly exogenous regressors

Also note that if you difference a standard regression equation in y ,
x1, x2... you derive an equation that does not have a constant term. A
constant term in an equation in differences corresponds to a linear
trend in the levels equation. Unless the levels equation already
contains a linear trend, applying differences to that equation should
result in a model without a constant term.
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Correcting for serial correlation with strictly exogenous regressors

. eststo, ti("GLS VCE"): prais D.rs LD.r20, nolog vsquish

Prais-Winsten AR(1) regression -- iterated estimates

Source SS df MS Number of obs = 524
F( 1, 522) = 25.73

Model 6.56420242 1 6.56420242 Prob > F = 0.0000
Residual 133.146932 522 .25507075 R-squared = 0.0470

Adj R-squared = 0.0452
Total 139.711134 523 .2671341 Root MSE = .50505

D.rs Coef. Std. Err. t P>|t| [95% Conf. Interval]

r20
LD. .3495857 .068912 5.07 0.000 .2142067 .4849647

_cons .0049985 .0272145 0.18 0.854 -.0484649 .0584619

rho .1895324

Durbin-Watson statistic (original) 1.702273
Durbin-Watson statistic (transformed) 2.007414
(est2 stored)
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Robust inference in the presence of autocorrelation

Robust inference in the presence of
autocorrelation

Just as we utilized the “White” heteroskedasticity-consistent standard
errors to deal with heteroskedasticity of unknown form, we may
generate estimates of the standard errors that are robust to both
heteroskedasticity and autocorrelation.

Why would we want to do this rather than explicitly take account of the
autocorrelated errors via the feasible generalized least squares
estimator described earlier? If we doubt that the explanatory variables
may be considered strictly exogenous, then the FGLS estimates will
not even be consistent, let alone efficient.
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Robust inference in the presence of autocorrelation Newey–West standard errrors

Also, FGLS is usually implemented in the context of an AR(1) model,
since it is much more complex to apply it to a more complex AR
structure. But higher-order autocorrelation in the errors may be quite
plausible. Robust methods may take account of that behavior.

The methodology to compute what are often termed
heteroskedasticity- and autocorrelation-consistent (HAC) standard
errors was developed by Newey and West; thus they are often referred
to as Newey–West standard errors.
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Robust inference in the presence of autocorrelation Newey–West standard errrors

Unlike the White standard errors, which require no judgment to
calculate, the Newey–West standard errors must be calculated
conditional on a choice of maximum lag. They are calculated from a
distributed lag of the OLS residuals, and one must specify the longest
lag at which autocovariances are to be computed. Normally a lag
length exceeding the periodicity of the data will suffice; e.g. at least 4
for quarterly data, 12 for monthly data, etc.

The Newey–West (HAC) standard errors may be readily calculated for
any OLS regression using Stata’s newey command. You must provide
the “option” lag( ), which specifies the maximum lag order, and
your data must be tsset (that is, known to Stata as time series data).
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Robust inference in the presence of autocorrelation Newey–West standard errrors

As the Newey-West formula involves an expression in the squares of
the residuals which is identical to White’s formula (as well as a second
term in the cross-products of the residuals), these robust estimates
subsume White’s correction. Newey-West standard errors in a time
series context are robust to both arbitrary autocorrelation (up to the
order of the chosen lag) as well as arbitrary heteroskedasticity.
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Robust inference in the presence of autocorrelation Newey–West standard errrors

Computation of Newey–West standard errors

. eststo, ti("Newey-West"): newey D.rs LD.r20, lag(6) vsquish

Regression with Newey-West standard errors Number of obs = 524
maximum lag: 6 F( 1, 522) = 35.74

Prob > F = 0.0000

Newey-West
D.rs Coef. Std. Err. t P>|t| [95% Conf. Interval]

r20
LD. .4882883 .0816725 5.98 0.000 .3278412 .6487354

_cons .0040183 .0256542 0.16 0.876 -.0463799 .0544166

(est3 stored)
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Robust inference in the presence of autocorrelation Newey–West standard errrors

Comparison of OLS, GLS, Newey–West estimates

. esttab, nonum mti se star(* 0.1 ** 0.05 *** 0.01)

OLS VCE GLS VCE Newey-West

LD.r20 0.488*** 0.350*** 0.488***
(0.0671) (0.0689) (0.0817)

_cons 0.00402 0.00500 0.00402
(0.0224) (0.0272) (0.0257)

N 524 524 524

Standard errors in parentheses

* p<0.1, ** p<0.05, *** p<0.01
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Heteroskedasticity in the time series context

Heteroskedasticity in the time series context

Heteroskedasticity can also occur in time series regression models. Its
presence, while not causing bias nor inconsistency in the point
estimates, has the usual effect of invalidating the standard errors,
t−statistics, and F−statistics, just as in the cross-sectional case.

As the Newey–West standard error formula subsumes the White
(robust) standard error component, if the Newey–West standard errors
are computed, they will also be robust to arbitrary departures from
homoskedasticity. However, the standard tests for heteroskedasticity
assume independence of the errors, so if the errors are serially
correlated, those tests will not generally be correct.

It thus makes sense to test for serial correlation first (using a
heteroskedasticity–robust test if it is suspected), correct for serial
correlation, and then apply a test for heteroskedasticity.
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Heteroskedasticity in the time series context The ARCH model

In the time series context, it may be quite plausible that if
heteroskedasticity—that is, variations in volatility in a time series
process—exists, it may itself follow an autoregressive pattern. This can
be termed a dynamic form of heteroskedasticity, in which Engle’s
ARCH (autoregressive conditional heteroskedasticity) model applies.

The simplest ARCH model, the ARCH(1), may be written as:

yt = β0 + β1zt + ut

E
(

u2
t |ut−1,ut−2, ...

)
= E

(
u2

t |ut−1

)
= α0 + α1u2

t−1
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Heteroskedasticity in the time series context The ARCH model

The second line is the conditional variance of ut given that series’ past
history, assuming that the u process is serially uncorrelated. As
conditional variances must be positive, this only makes sense if α0 > 0
and α1 ≥ 0. We can rewrite the second line as:

u2
t = α0 + α1u2

t−1 + υt

which then appears as an autoregressive model in the squared errors,
with stability condition α1 < 1. When α1 > 0, the squared errors
contain positive serial correlation, even though the errors themselves
do not.
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Heteroskedasticity in the time series context The ARCH model

If this sort of process is evident in the regression errors, what are the
consequences? First of all, OLS are still BLUE. There are no
assumptions on the conditional variance of the error process that
would invalidate the use of OLS in this context.

But we may want to explicitly model the conditional variance of the
error process, since in many financial series the movements of
volatility are of key importance (for instance, option pricing via the
standard Black–Scholes formula requires an estimate of the volatility of
the underlying asset’s returns, which may well be time–varying).
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Heteroskedasticity in the time series context The ARCH model

Estimation of ARCH models, of which there are many flavors, with the
most common extension being Bollerslev’s GARCH (generalized
ARCH), may be performed via Stata’s arch command. Tests for
ARCH, which are based on the squared residuals from an OLS
regression, are provided by Stata’s estat archlm command.

The GARCH model generalizes ARCH by making the equation for the
conditional variance autoregressive. For instance, a GARCH(1,1) has
one squared lagged residual (as does the ARCH(1)) and one lagged
conditional variance term. This permits changes in the conditional
variance to be persistent, supporting the notion of “volatility clustering”,
a stylized feature of many financial markets.
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Heteroskedasticity in the time series context The ARCH model

Test for ARCH effects

. regress D.rs LD.r20 if tin(1968m1,1987m12), vsquish

Source SS df MS Number of obs = 240
F( 1, 238) = 35.23

Model 12.9525197 1 12.9525197 Prob > F = 0.0000
Residual 87.4959194 238 .367629914 R-squared = 0.1289

Adj R-squared = 0.1253
Total 100.448439 239 .420286356 Root MSE = .60632

D.rs Coef. Std. Err. t P>|t| [95% Conf. Interval]

r20
LD. .5182356 .0873083 5.94 0.000 .3462398 .6902313

_cons -.0013338 .0391447 -0.03 0.973 -.0784482 .0757806

. estat archlm, lag(6)
LM test for autoregressive conditional heteroskedasticity (ARCH)

lags(p) chi2 df Prob > chi2

6 12.605 6 0.0498

H0: no ARCH effects vs. H1: ARCH(p) disturbance
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Heteroskedasticity in the time series context The ARCH model

Estimation of ARCH(1)

. arch D.rs LD.r20 if tin(1968m1,1987m12), vsquish nolog arch(1)

ARCH family regression

Sample: 1968m1 - 1987m12 Number of obs = 240
Distribution: Gaussian Wald chi2(1) = 31.49
Log likelihood = -210.3585 Prob > chi2 = 0.0000

OPG
D.rs Coef. Std. Err. z P>|z| [95% Conf. Interval]

rs
r20
LD. .4834147 .086148 5.61 0.000 .3145678 .6522616

_cons -.0232651 .0408096 -0.57 0.569 -.1032503 .0567202

ARCH
arch
L1. .3520788 .098854 3.56 0.000 .1583285 .5458292

_cons .2500282 .026432 9.46 0.000 .1982225 .3018339
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Heteroskedasticity in the time series context The ARCH model

Estimation of GARCH(1,1)

. arch D.rs LD.r20 if tin(1968m1,1987m12), vsquish nolog arch(1) garch(1)

ARCH family regression

Sample: 1968m1 - 1987m12 Number of obs = 240
Distribution: Gaussian Wald chi2(1) = 30.43
Log likelihood = -209.9285 Prob > chi2 = 0.0000

OPG
D.rs Coef. Std. Err. z P>|z| [95% Conf. Interval]

rs
r20
LD. .4770033 .0864743 5.52 0.000 .3075169 .6464898

_cons -.0315637 .0417344 -0.76 0.449 -.1133616 .0502342

ARCH
arch
L1. .3307069 .0939578 3.52 0.000 .146553 .5148607

garch
L1. -.0972367 .088432 -1.10 0.272 -.2705603 .0760868

_cons .2893454 .048117 6.01 0.000 .1950378 .3836531
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Heteroskedasticity in the time series context The ARCH model

Estimation of GARCH(2,1)

. arch D.rs D.r20, vsquish nolog arch(1/2) garch(1)

ARCH family regression

Sample: 1952m4 - 1995m12 Number of obs = 525
Distribution: Gaussian Wald chi2(1) = 217.21
Log likelihood = -321.6537 Prob > chi2 = 0.0000

OPG
D.rs Coef. Std. Err. z P>|z| [95% Conf. Interval]

rs
r20
D1. .7323761 .0496934 14.74 0.000 .6349788 .8297734

_cons -.0125529 .0217549 -0.58 0.564 -.0551917 .030086

ARCH
arch
L1. .3119534 .0423652 7.36 0.000 .2289192 .3949876
L2. .317849 .0418111 7.60 0.000 .2359007 .3997974

garch
L1. -.9870572 .0051328 -192.31 0.000 -.9971172 -.9769971

_cons .3055895 .0138711 22.03 0.000 .2784026 .3327764
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