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Chapter 8: Heteroskedasticity

In laying out the standard regression model, we made the assumption
of homoskedasticity of the regression error term: that its variance is
assumed to be constant in the population, conditional on the
explanatory variables.

The assumption of homoskedasticity fails when the variance changes
in different segments of the population: for instance, if the variance of
the unobserved factors influencing individuals’ saving increases with
their level of income. In such a case, we say that the error process is
heteroskedastic.
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This does not affect the optimality of ordinary least squares for the
computation of point estimates–and the assumption of
homoskedasticity did not underly our derivation of the OLS formulas.
But if this assumption is not tenable, we may not be able to rely on the
interval estimates of the parameters: on their confidence intervals, and
t−statistics derived from their estimated standard errors.

The Gauss–Markov theorem, proving the optimality of least squares
among linear unbiased estimators of the regression equation, does not
hold in the presence of heteroskedasticity. If the error variance is not
constant, then OLS estimators are no longer BLUE.
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How, then, should we proceed? The classical approach is to test for
heteroskedasticity, and if it is evident, try to model it. We can derive
modified least squares estimators (known as weighted least squares)
which will regain some of the desirable properties enjoyed by OLS in a
homoskedastic setting.

But this approach is sometimes problematic, since there are many
plausible ways in which the error variance may differ in segments of
the population: depending on some of the explanatory variables in our
model, or perhaps on some variables that are not even in the model.
We can use weighted least squares effectively if we can derive the
correct weights, but may not be much better off if we cannot convince
ourselves that our application of weighted least squares is valid.
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Robust standard errors

Robust standard errors

Fortunately, developments in econometric theory have made it possible
to avoid these quandaries. Methods have been developed to adjust the
estimated standard errors in an OLS context for heteroskedasticity of
unknown form: to develop what are known as robust standard errors.
Most statistical packages now support the calculation of these robust
standard errors when a regression is estimated.
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Robust standard errors

If heteroskedasticity is a problem, the robust standard errors will differ
from those calculated by OLS, and we should take the former as more
appropriate. How can you compute these robust standard errors? In
Stata, one merely adds the option ,robust to the regress
command.

The ANOVA F-table will be suppressed (as will the adjusted R2

measure), since neither is valid when robust standard errors are being
computed, and the term “robust” will be displayed above the standard
errors of the coefficients to remind you that robust errors are in use.
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Robust standard errors

How are robust standard errors calculated? Consider a model with a
single explanatory variable. The OLS estimator can be written as:

b1 = β1 +

∑
(xi − x̄) ui∑
(xi − x̄)2
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Robust standard errors

This gives rise to an estimated variance of the slope parameter:

Var (b1) =

∑
(xi − x̄)2 σ2

i(∑
(xi − x̄)2

)2 (1)

This expression reduces to the standard expression from Chapter 2 if
σ2

i = σ2 for all observations:

Var (b1) =
σ2∑

(xi − x̄)2
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Robust standard errors

But if σ2
i 6= σ2 this simplification cannot be performed on (1). How can

we proceed? Halbert White showed (in a famous article in
Econometrica, 1980) that the unknown error variance of the i th

observation, σ2
i , can be consistently estimated by e2

i −that is, by the
square of the OLS residual from the original equation.

This enables us to compute robust variances of the parameters. For
instance, (1) can now be computed from the OLS residuals, and its
square root will be the robust standard error of b1.
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Robust standard errors

This carries over to multiple regression; in the general case of k
explanatory variables,

Var
(
bj
)

=

∑
r2
ij e2

i(∑(
xij − x̄j

)2
)2 (2)

where e2
i is the square of the i th OLS residual, and rij is the i th residual

from regressing variable j on all other explanatory variables.
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Robust standard errors

The square root of this quantity is the heteroskedasticity-robust
standard error, or the “White” standard error, of the j th estimated
coefficient. It may be used to compute the heteroskedasticity-robust
t−statistic, which then will be valid for tests of the coefficient even in
the presence of heteroskedasticity of unknown form.

Likewise, F -statistics, which would also be biased in the presence of
heteroskedasticity, may be consistently computed from the regression
in which the robust standard errors of the coefficients are available.
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Robust standard errors

If we have this better mousetrap, why would we want to report OLS
standard errors–which would be subject to bias, and thus unreliable, if
there is a problem of heteroskedasticity? If (and only if) the assumption
of homoskedasticity is valid, the OLS standard errors are preferred,
since they will have an exact t−distribution at any sample size.

The application of robust standard errors is justified as the sample size
becomes large. If we are working with a sample of modest size, and
the assumption of homoskedasticity is tenable, we should rely on OLS
standard errors.
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Robust standard errors

As robust standard errors are very easily calculated in most statistical
packages, it is a simple task to estimate both sets of standard errors
for a particular equation, and consider whether inference based on the
OLS standard errors is fragile. In large data sets, it has become
increasingly common practice to report the robust standard errors.
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Testing for heteroskedasticity

Testing for heteroskedasticity

We may want to demonstrate that the model we have estimated does
not suffer from heteroskedasticity, and justify reliance on OLS and OLS
standard errors in this context. How might we evaluate whether
homoskedasticity is a reasonable assumption? If we estimate the
model via standard OLS, we may then base a test for
heteroskedasticity on the OLS residuals.
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Testing for heteroskedasticity

If the assumption of homoskedasticity, conditional on the explanatory
variables, holds, it may be written as:

H0 : Var (u|x1, x2, ..., xk ) = σ2

And a test of this null hypothesis can evaluate whether the variance of
the error process appears to be independent of the explanatory
variables. We cannot observe the variances of each observation, of
course, but as above we can rely on the squared OLS residual, e2

i , to
be a consistent estimator of σ2

i .
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Testing for heteroskedasticity

One of the most common tests for heteroskedasticity is derived from
this line of reasoning: the Breusch–Pagan test. The BP test involves
regressing the squares of the OLS residuals on a set of variables, such
as the original explanatory variables, in an auxiliary regression:

e2
i = d0 + d1x1 + d2x2 + ...dkxk + v (3)

If the magnitude of the squared residual, which is a consistent
estimator of the error variance of that observation, is not related to any
of the explanatory variables, then this regression will have no
explanatory power: its R2 will be small, and its ANOVA F−statistic will
indicate that it does not explain any meaningful fraction of the variation
of e2

i around its own mean. Note that although the OLS residuals have
mean zero, and are in fact uncorrelated by construction with each of
the explanatory variables, that does not apply to their squares.
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Testing for heteroskedasticity

The Breusch–Pagan test can be conducted by either the ANOVA
F−statistic from (3), or by a large-sample form known as the Lagrange
multiplier statistic: LM = n × R2 from the auxiliary regression. Under
H0 of homoskedasticity, LM ∼ χ2

k .

The Breusch–Pagan test can be computed with the estat hettest
command after regress.

regress price mpg weight length
estat hettest

which would evaluate the residuals from the regression for
heteroskedasticity, with respect to a linear combination of the original
explanatory variables: the ŷ values from the regression. The null
hypothesis is that of homoskedasticity; if a small p−value is received,
the null is rejected in favor of heteroskedasticity. That is, the auxiliary
regression (which is not shown) had a meaningful amount of
explanatory power.
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Testing for heteroskedasticity

The test displays the LM statistic and its p−value versus the χ2
k

distribution. If a rejection is received, one should rely on robust
standard errors for the original regression. Although we have
demonstrated the Breusch–Pagan test by employing a combination of
the original explanatory variables, the test may be used with any set of
variables: including those not in the regression, but suspected of being
systematically related to the error variance, such as the size of a firm,
or the wealth of an individual.
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Testing for heteroskedasticity

. eststo, ti("iid"):reg price mpg weight length

Source SS df MS Number of obs = 74
F( 3, 70) = 12.98

Model 226957412 3 75652470.6 Prob > F = 0.0000
Residual 408107984 70 5830114.06 R-squared = 0.3574

Adj R-squared = 0.3298
Total 635065396 73 8699525.97 Root MSE = 2414.6

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

mpg -86.78928 83.94335 -1.03 0.305 -254.209 80.63046
weight 4.364798 1.167455 3.74 0.000 2.036383 6.693213
length -104.8682 39.72154 -2.64 0.010 -184.0903 -25.64607
_cons 14542.43 5890.632 2.47 0.016 2793.94 26290.93

(est1 stored)

. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of price

chi2(1) = 16.21
Prob > chi2 = 0.0001

. eststo, ti("robust"): qui reg price mpg weight length, robust
(est2 stored)
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Testing for heteroskedasticity

. esttab,star(* 0.1 ** 0.05 *** 0.01) mti nonum

iid robust

mpg -86.79 -86.79
(-1.03) (-0.95)

weight 4.365*** 4.365**
(3.74) (2.36)

length -104.9** -104.9*
(-2.64) (-1.86)

_cons 14542.4** 14542.4**
(2.47) (2.18)

N 74 74

t statistics in parentheses

* p<0.1, ** p<0.05, *** p<0.01
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Testing for heteroskedasticity

The Breusch-Pagan test is a special case of White’s general test for
heteroskedasticity. The sort of heteroskedasticity that will damage
OLS standard errors is that which involves correlations between
squared errors and explanatory variables. White’s test takes the list of
explanatory variables {x1, x2, ..., xk} and augments it with squares and
cross products of each of these variables.

The White test then runs an auxiliary regression of e2
i on the

explanatory variables, their squares, and their cross products. Under
the null hypothesis, none of these variables should have any
explanatory power, if the error variances are not systematically varying.
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Testing for heteroskedasticity

The White test is another LM test, of the n × R2 form, but involves a
much larger number of regressors in the auxiliary regression. In the
example above, rather than just including mpg weight length,we
would also include mpg2, weight2, length2, mpg×weight,
mpg×length, and weight×length: 9 regressors in all, giving rise
to a test statistic with a χ2

(9) distribution.

How can you perform White’s test? Give the command estat
imtest, white after your regression. The command will
automatically generate these additional variables and perform the test
after a regress command. Since Stata knows what explanatory
variables were used in the regression, you need not specify them.
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Testing for heteroskedasticity

. qui reg price mpg weight length

. imtest, white

White´s test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(9) = 39.59
Prob > chi2 = 0.0000

Cameron & Trivedi´s decomposition of IM-test

Source chi2 df p

Heteroskedasticity 39.59 9 0.0000
Skewness 16.16 3 0.0011
Kurtosis 0.13 1 0.7136

Total 55.89 13 0.0000

The null of homoskedasticity is overwhelmingly rejected, and i .i .d .
standard errors should not be used.
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Weighted least squares estimation

Weighted least squares estimation

As an alternative to using heteroskedasticity-robust standard errors,
we could transform the regression equation if we had knowledge of the
form taken by heteroskedasticity. For instance, if we had reason to
believe that:

Var(u|x) = σ2h(x)

where h(x) is some function of the explanatory variables that could be
made explicit (e.g. h(x) = income), we could use that information to
properly specify the correction for heteroskedasticity.
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Weighted least squares estimation

What would this entail? Since in this case we are saying that
Var(u|x) ∝ income, then the standard deviation of ui , conditional on
incomei , is

√
incomei . Thus could be used to perform weighted least

squares: a technique in which we transform the variables in the
regression, and then run OLS on the transformed equation.
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Weighted least squares estimation

If we were estimating a simple savings function from the dataset
saving.dta, in which sav is regressed on inc, and believed that
there might be heteroskedasticity of the form above, we would perform
the following transformations:

gen sd=sqrt(inc)
gen wsav=sav/sd
gen kon=1/sd
gen winc=inc/sd
regress wsav winc kon, noc
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Weighted least squares estimation

Original regression:

. eststo, ti("OLS"):regress sav inc

Source SS df MS Number of obs = 100
F( 1, 98) = 6.49

Model 66368437 1 66368437 Prob > F = 0.0124
Residual 1.0019e+09 98 10223460.8 R-squared = 0.0621

Adj R-squared = 0.0526
Total 1.0683e+09 99 10790581.8 Root MSE = 3197.4

sav Coef. Std. Err. t P>|t| [95% Conf. Interval]

inc .1466283 .0575488 2.55 0.012 .0324247 .260832
_cons 124.8424 655.3931 0.19 0.849 -1175.764 1425.449

(est1 stored)
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Weighted least squares estimation

. bcuse saving, clear nodesc

. gen sd=sqrt(inc)

. gen wsav=sav/sd

. gen kon=1/sd

. gen winc=inc/sd

WLS regression:

. regress wsav winc kon, noc

Source SS df MS Number of obs = 100
F( 2, 98) = 14.30

Model 25251.0121 2 12625.506 Prob > F = 0.0000
Residual 86513.4811 98 882.790623 R-squared = 0.2259

Adj R-squared = 0.2101
Total 111764.493 100 1117.64493 Root MSE = 29.712

wsav Coef. Std. Err. t P>|t| [95% Conf. Interval]

winc .1717555 .0568128 3.02 0.003 .0590124 .2844986
kon -124.9528 480.8606 -0.26 0.796 -1079.205 829.2995
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Weighted least squares estimation

Note that there is no constant term in the weighted least squares
(WLS) equation, and that the coefficient on winc still has the same
connotation: that of the marginal propensity to save. In this case,
though, we might be thankful that Stata (and most modern packages)
have a method for estimating WLS models by merely specifying the
form of the weights:

regress sav inc [aw=1/inc]

In this case, the “aw” indicates that we are using “analytical weights”,
Stata’s term for this sort of weighting, and the analytical weight is
specified to be the inverse of the observation variance (not its standard
error).
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Weighted least squares estimation

If you run this regression, you will find that its coefficient estimates and
their standard errors are identical to those of the transformed equation.
with less hassle than the latter, in which the summary statistics
(F-statistic, R2, predicted values, residuals, etc.) pertain to the
transformed dependent variable (wsav) rather than the original
variable.
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Weighted least squares estimation

WLS with analytical weights:

. eststo, ti("WLS"):regress sav inc [aw=1/inc]
(sum of wgt is 1.3877e-02)

Source SS df MS Number of obs = 100
F( 1, 98) = 9.14

Model 58142339.8 1 58142339.8 Prob > F = 0.0032
Residual 623432468 98 6361555.8 R-squared = 0.0853

Adj R-squared = 0.0760
Total 681574808 99 6884594.02 Root MSE = 2522.2

sav Coef. Std. Err. t P>|t| [95% Conf. Interval]

inc .1717555 .0568128 3.02 0.003 .0590124 .2844986
_cons -124.9528 480.8606 -0.26 0.796 -1079.205 829.2994

(est2 stored)

cfb (BC Econ) ECON2228 Notes 6 2014–2015 31 / 41



Weighted least squares estimation

. esttab,star(* 0.1 ** 0.05 *** 0.01) mti nonum

OLS WLS

inc 0.147** 0.172***
(2.55) (3.02)

_cons 124.8 -125.0
(0.19) (-0.26)

N 100 100

t statistics in parentheses

* p<0.1, ** p<0.05, *** p<0.01
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Weighted least squares estimation

The use of this sort of WLS estimation is less popular than it was
before the invention of “White” standard errors; in theory, the
transformation to homoskedastic errors will yield more attractive
properties than even the use of “White” standard errors, conditional on
our proper specification of the form of the heteroskedasticity. But of
course we are not sure about that, and imprecise treatment of the
errors may not be as attractive as the less informed technique of using
the robust estimates.
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Weighted least squares estimation One rationale for WLS

One rationale for WLS

One case in which we do know the form of the heteroskedasticity is
that of grouped data, in which the data we are using has been
aggregated from microdata into groups of different sizes. For instance,
a dataset with 50 states’ average values of income, family size, etc.
calculated from a random sample of the U.S. population will have
widely varying precision in those average values. The mean values for
a small state will be computed from relatively few observations,
whereas the counterpart values for a large state will be more precisely
estimated.
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Weighted least squares estimation One rationale for WLS

As we know that the standard error of the mean is σ/
√

n, we recognize
how this effect will influence the precision of the estimates. How, then,
can we use this dataset of 50 observations while dealing with the
known heteroskedasticity of the states’ errors? This too is weighted
least squares, where the weight on the individual state should be its
population.

This can be achieved in Stata by specifying “frequency weights”, a
variable containing the number of observations from which each
sample observation represents. If we had state-level data on saving,
income and population, we might regress saving income
[fw=pop] to achieve this weighting.
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Weighted least squares estimation One rationale for WLS

OLS:

. sysuse census, clear
(1980 Census data by state)

. g pcturban = 100 * popurban / pop

. eststo, ti("OLS"): reg medage pcturban

Source SS df MS Number of obs = 50
F( 1, 48) = 2.33

Model 6.50713318 1 6.50713318 Prob > F = 0.1334
Residual 134.012852 48 2.79193441 R-squared = 0.0463

Adj R-squared = 0.0264
Total 140.519985 49 2.8677548 Root MSE = 1.6709

medage Coef. Std. Err. t P>|t| [95% Conf. Interval]

pcturban .0252898 .0165655 1.53 0.133 -.0080173 .058597
_cons 27.84687 1.133939 24.56 0.000 25.56693 30.1268

(est1 stored)
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Weighted least squares estimation One rationale for WLS

WLS with frequency weights:

. eststo, ti("WLS FW"): reg medage pcturban [fw=pop]

Source SS df MS Number of obs =225907472
F( 1,225907470) =

> .
Model 61570814.8 1 61570814.8 Prob > F = 0.0000

Residual 555366235225907470 2.45837924 R-squared = 0.09
> 98

Adj R-squared = 0.0998
Total 616937050225907471 2.73092805 Root MSE = 1.56

> 79

medage Coef. Std. Err. t P>|t| [95% Conf. Interval]

pcturban .0405598 8.10e-06 5004.53 0.000 .0405439 .0405757
_cons 27.12268 .0006061 4.5e+04 0.000 27.12149 27.12386

(est2 stored)

. predict double wtmedage, xb
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Weighted least squares estimation One rationale for WLS

. esttab,star(* 0.1 ** 0.05 *** 0.01) mti nonum

OLS WLS FW

pcturban 0.0253 0.0406***
(1.53) (5004.53)

_cons 27.85*** 27.12***
(24.56) (44752.12)

N 50 225907472

t statistics in parentheses

* p<0.1, ** p<0.05, *** p<0.01

. tw (scatter medage pcturban, ylab(,angle(0))) ///
> (lfit medage pcturban, ti("Median age vs urbanization, FW"))

When frequency weights are used, the effect of urbanization on
median age in a state is precisely estimated. For each additional
percent of urban population, the median age increases by 0.04 years,
or about two weeks.
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Weighted least squares estimation One rationale for WLS

24.00

26.00
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pcturban

Median age Fitted values

Median age vs urbanization, FW
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A rationale for ratio transformation

A rationale for ratio transformation

One additional observation regarding heteroskedasticity. We often see,
in empirical studies, that an equation has been specified in some ratio
form—for instance, with per capita dependent and independent
variables for data on states or countries, or in terms of financial ratios
for firm- or industry-level data.

Although there may be no mention of heteroskedasticity in the study, it
is very likely that these ratio forms have been chosen to limit the
potential damage of heteroskedasticity in the estimated model. There
can certainly be heteroskedasticity in a per-capita form regression on
country-level data, but it is much less likely to be a problem than it
would be if, say, the levels of GDP were used in that model.
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A rationale for ratio transformation

Similarly, scaling firms’ values by total assets, or total revenues, or the
number of employees will tend to mitigate the difficulties caused by
extremes in scale between large corporations and corner stores. Such
models should still be examined for their errors’ behavior, but the
popularity of the ratio form in these instances is an implicit
consideration of potential heteroskedasticity.
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