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Regression analysis with time series data

Chapter 10: Basic regression analysis with time
series data

We now turn to the analysis of time series data. One of the key
assumptions underlying our analysis of cross-sectional data will prove
to be untenable when we consider time series data. Thus, we separate
out the issues of time series modeling from that of cross sections.
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Regression analysis with time series data

How do time series data differ? First of all, it has a natural ordering,
that of calendar time at some periodic frequency. Note that we are not
considering here a dataset in which some of the variables are dated at
a different point in time: e.g. a survey measuring this year’s income,
and (as a separate variable) last year’s income.

In time series data sets, the observations are dated, and thus we need
to respect their order, particularly if the model we consider has a
dynamic specification: involving variables from more than one point in
time.
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Regression analysis with time series data

What is a time series? Merely a sequence of observations on some
phenomenon observed at regular intervals. Those intervals may
correspond to the passage of calendar time (e.g. annual, quarterly,
monthly data) or they may reflect an economic process that is irregular
in calendar time (such as business-daily data). In either case, our
observations may not be available for every point in time (for instance,
there are days when a given stock does not trade on the exchange).

A second important difference between cross-sectional and time
series data: with the former, we can reaonably assume that the sample
is drawn randomly from the appropriate population, and could conceive
of one or many alternate samples constructed from the same
population.
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Regression analysis with time series data

In the case of time series data, we consider the sequence of events we
have recorded as a realization of the underlying process. We only
have one realization available, in the sense that history played out a
specific sequence of events. In an alternate universe, Clemson might
have lost to BC this year, or the Red Sox might have triumphed in the
World Series.

Randomness plays a role, of course, just as it does in cross-sectional
data; we do not know what will transpire until it happens, so that time
series data ex ante are random variables. We often speak of a time
series as a stochastic process, or time series process, focusing on the
concept that there is some mechanism generating that process, with a
random component.
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Types of time series regression models

Types of time series regression models

Models used in a time series context can often be grouped into those
sharing common features. By far the simplest is a static model, such as

yt = β0 + β1x1,t + β2x2,t + ut (1)

We may note that this model is the equivalent of the cross-sectional
regression model, with the i subscript in the cross section replaced by
t in the time series context.
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Types of time series regression models

Each observation is modeled as depending only on contemporaneous
values of the explanatory variables. This structure implies that all of
the interactions among the variables of the model are assumed to take
place immediately: or, taking the frequency into account, within the
same time period.

Such a model might be reasonable when applied to annual data,
where the length of the observation interval is long enough to allow
behavioral adjustments to take place. If we applied the same model to
higher-frequency data, we might consider that assumption
inappropriate. For instance, the effects of a tax cut would not be fully
reflected by higher retail sales in the same month that it took effect.
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Types of time series regression models

An example of such a structure that appears in many textbooks is the
static Phillips curve:

πt = β0 + β1URt + ut (2)

where πt is this year’s inflation rate, and URt is this year’s
unemployment rate. Stating the model in this form not only implies that
the level of unemployment is expected to affect the rate of inflation
(presumably with a negative sign), but also that the entire effect of
changes in unemployment will be reflected in inflation within the
observation interval (e.g. one year).
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Types of time series regression models

In many contexts, we find a static model inadequate to reflect what we
consider to be the relationship between explanatory variables and
those variables we wish to explain. For instance, economic theory
surely predicts that changes in interest rates (generated by monetary
policy) will have an effect on firms’ capital investment spending. At
lower interest rates, firms will find more investment projects with a
positive expected net present value.

But since it takes some time to carry out these projects, as equipment
must be ordered, delivered, and installed, or new factories must be
built and equipped, we would not expect that quarterly investment
spending would reflect the same quarter’s (or even the previous
quarter’s) interest rates.
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Types of time series regression models Distributed lag models

Interest rates affect capital investment spending with a lag, and we
must take account of that phenomenon. If we were to model capital
investment with a static model, we would be omitting relevant
explanatory variables: the prior values of the causal factors. These
omissions would cause our estimates of the static model to be biased
and inconsistent.

We must use some form of distributed lag model to express the
relationship between current and past values of the explanatory
variables and the outcome.
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Types of time series regression models Distributed lag models

Distributed lag models may take a finite number of lagged values into
account (thus the Finite Distributed Lag model, or FDL) or they may
use an infinite distributed lag: e.g. all past values of the x variables.

When an infinite DL model is specified, some algebraic sleight-of-hand
must be used to create a finite set of regressors.
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Types of time series regression models Distributed lag models

A simple FDL model would be

ft = β0 + β1pet + β2pet−1 + β3pet−2 + ut (3)

in which we consider the fertility rate in the population as a function of
the personal exemption, or child allowance, over this year and the past
two years.

We would expect that the effect of a greater personal exemption is
positive, but realistically we would not expect the effect to be (only)
contemporaneous. Given that there is at least a 9-month lag between
the decision and the recorded birth, we would expect such an effect, if
it exists, to be largely concentrated in the β2 and β3 coefficients.
Indeed, we might consider whether additional lags are warranted.
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Types of time series regression models Distributed lag models

In this model, β1 is the impact effect, or impact multiplier of the
personal exemption, measuring the contemporaneous change. How do
we calculate ∂f/∂pe? That total derivative must be considered as the
effect of a one-time change in pe that raises the exemption by one unit
and leaves it permanently higher. It may be computed by evaluating
the steady state of the model: that with all time subscripts dropped.
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Types of time series regression models Distributed lag models

The total effect, or long-run multiplier, of a permanent change in pe is
(β1 + β2 + β3) . In this specification, we presume that there is an
impact effect by allowing for a nonzero value of β1), but we are
imposing the restriction that the entire effect will be felt within the two
year lag.

This is testable by allowing for additional lag terms in the model and
testing for their joint significance. However the analysis of individual lag
coefficients is often hampered, especially at higher frequencies such
as quarterly and monthly data, by high autocorrelation in the series.
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Types of time series regression models Distributed lag models

The values of the series are closely related to each other over time. If
this is the case, then many of the individual coefficients in a FDL
regression model may not be distinguishable from zero. This does not
imply, though, that the sum of those coefficients (i.e. the long run
multiplier) will be imprecisely estimated. We may get a very precise
value for that effect, even if its components are highly intercorrelated.
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Types of time series regression models Distributed lag models

One additional concern that will apply in estimating FDL models,
especially when the number of observations is limited. Each lagged
value included in a model results in the loss of one observation in the
estimation sample. Likewise, the use of a first difference
(∆yt ≡ yt − yt−1) on either the left or right side of a model results in the
loss of one observation.

If we have a long time series, we may not be too concerned about this;
but if we were working with monthly data, and felt it appropriate to
consider 12 lags of the explanatory variables, we would lose the first
year of data to provide these starting values.
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Types of time series regression models Distributed lag models

Stata may be set up to recognize the time series nature of the data. In
Stata, we use the tsset command to identify the date variable, which
must contain the calendar dates over which the data are measured.

We can then construct lags and first differences taking these
constraints into account: for instance, a lagged value of a variable will
be set to a missing value where it is not available.
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Types of time series regression models Distributed lag models

In Stata, once a dataset has been established as time series, we may
use the operators L.,D.,F. and S. to refer to the lag, difference,
lead and ‘seasonal difference’ of a variable, respectively: so L.gdp is
last period’s gdp, D.gdp is the first difference, and F.gdp is next
year’s value.

These operators can also consider higher lags, so L2.gdp is the
second lag, and L(1/4).gdp refers to the first four lags, using
standard Stata “numlist” notation ( help numlist for details).
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Types of time series regression models Distributed lag models

The ‘seasonal difference’, or S. operator, allows you to compute
year-over-year differences. For quarterly data, S4.sales is the
difference between sales this quarter and sales four quarters ago.
Note that this is not the same as D4.sales, which refers to the first
difference operator applied repeatedly.

When working with time series data in Stata, you should always tsset
the data and use the time series operators to ensure that expressions
involving data at different points in time are properly computed.
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Finite sample properties of OLS

Finite sample properties of OLS

How must we modify the assumptions underlying OLS to deal with
time series data? First of all, we assume that there is a linear model
linking y with a set of explanatory variables, {x1...xk}, with an additive
error u,for a sample of t = 1, ...,T . It is useful to consider the
explanatory variables as being arrayed in a matrix:

X =

x1,1 · · · x1,k
x2,1 · · · x2,k
... · · ·

...
xT ,1 · · · xT ,k

where, like a spreadsheet, the rows are the observations (indexed by
time) and the columns are the variables (which may actually be dated
differently: e.g., x2 may actually be the lag of x1.)
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Finite sample properties of OLS

To proceed with the development of the finite sample properties of
OLS, we assume:

Proposition
For each t , E(ut |X ) = 0, where X is the matrix of explanatory
variables.

This is a key assumption, and quite a strong one: it states not only that
the error is contemporaneously uncorrelated with each of the
explanatory variables, but also that the error is assumed to be
uncorrelated with elements of X at every point in time.
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Finite sample properties of OLS

The weaker statement of contemporaneous exogeneity,
E(ut |xt ,1, xt ,2, ..., xt ,k ) = 0 is analogous to the assumption that we
made in the cross-sectional context. But this is a stronger assumption,
for it states that the elements of X , past, present, and future, are
independent of the errors: or that the explanatory variables in X are
strictly exogenous.

It is important to note that this assumption, by itself, says nothing about
the correlations over time among the explanatory variables, nor their
correlations with each other, nor about the possibility that successive
elements of u may be correlated (in which case we would say that u is
autocorrelated). The assumption only states that the distributions of u
and X are independent.
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Finite sample properties of OLS

What might cause this assumption to fail? Omitted variables and/or
measurement error will cause a correlation between the regressors
and errors. But in a time series context there are other likely suspects.

If we estimate a static model, for instance, but the true relationship is
dynamic: in which lagged values of some of the explanatory variables
also have direct effects on y , we will have a correlation between
contemporaneous x and the error term, as it will contain the effects of
lagged x , which is likely to be correlated with current x . This could be
dealt with by including lagged x values as additional regressors.
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Finite sample properties of OLS

The assumption of strict exogeneity has strong implications for the
correct specification of the model. It also implies that there cannot be
correlation between current values of the error process and future x
values: something that would be likely in a case where some of the x
variables are policy instruments. For instance, consider a model of
farmers’ income, dependent on (among other factors) on government
price supports for their crop.

If unprecedented shocks (such as a series of droughts), which are
unpredictable and random effects of weather on farmers’ income,
trigger an expansion of the government price support program, then
the errors today are correlated with future x values.
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Finite sample properties of OLS

The last assumption we need is the standard assumption that the
columns of X are linearly independent: that is, there are no exact
linear relations, or perfect collinearity, among the regressors.
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Finite sample properties of OLS

Given these assumptions, we can demonstrate that the OLS
estimators are unbiased, both conditional on X and unconditionally.
The random assumption that allowed us to prove unbiasedness in the
cross-sectional context has been replaced by the assumption of strict
exogeneity in the time series context.

We now turn to the interval estimates. As previously, we assume that
the error variance, conditioned on X , is homoskedastic:
Var(ut |X ) = Var(ut ) = σ2,∀t .

In a time series context, this assumption states that the error variance
is constant over time, and in particular not influenced by the X
variables. In some cases, this may be quite unrealistic, if there is clear
evidence of time-varying volatility as in many financial markets.
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Finite sample properties of OLS

We now add an additional assumption, particular to time series
analysis: that there is no serial correlation in the errors:
Cov(ut ,us|X ) = Cov(ut ,us) = 0, ∀t 6= s.

This assumption states that the errors are not autocorrelated, or
correlated with one another, so that there is no systematic pattern in
the errors over time. This may clearly be violated, if the error in one
period (the degree to which the actual level of y falls short of the
desired level) is positively (or negatively) related to the error in the
previous period.
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Finite sample properties of OLS

Positive autocorrelation can readily arise in a situation where there is
partial adjustment to a discrepancy, whereas negative autocorrelation
is much more likely to reflect “overshooting,” in which a positive error
(for instance, an overly optimistic forecast) is followed by a negative
error (a pessimistic forecast).

This assumption has nothing to do with the potential autocorrelation
within the X matrix; it only applies to the error process. Why is this
assumption only relevant for time series? In cross sections, we
assume random sampling, whereby each observation is independent
of every other. In time series, the sequence of the observations makes
it likely that if independence is violated, it will show up in successive
observations’ errors.
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Finite sample properties of OLS

With these additional assumptions, we may state the Gauss-Markov
theorem for OLS estimators of a time series model: that OLS
estimators are BLUE, implying that the variances of the OLS
estimators are given by:

Var(bj |X ) =
σ2[

SSTj

(
1− R2

j

)] (4)

where SSTj is the total sum of squares of the j th explanatory variable,
and R2

j is the R2 from a regression of variable xj on the other elements
of X . Likewise, the unknown parameter σ2 may be replaced by its
consistent estimate, s2 = SSR

n−k−1 , just as in cross-sectional regression.
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Finite sample properties of OLS

As in our prior derivation, we will assume that the errors are normally
distributed: u ∼ N(0, σ2). If the above assumptions hold, then the
standard t−statistics and F−statistics we have applied in a
cross-sectional context will also be applicable in time series regression
models.

cfb (BC Econ) ECON2228 Notes 9 2014–2015 30 / 50



Functional form, dummy variables, and index numbers

Functional form, dummy variables, and index
numbers

A logarithmic transformation is very commonly used in time series
models, particularly with series that reflect stocks, flows, or prices
rather than rates. Many models are specified with the first difference of
log(y ), implying that the dependent variable is the growth rate of y .

Dummy variables are also very useful to test for structural change. We
may have a priori information that indicates that unusual events were
experienced in particular time periods: wars, strikes, or presidential
elections, or a market crash. In the context of a dynamic model, we do
not want to merely exclude those observations, as that would create
episodes of missing data.
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Functional form, dummy variables, and index numbers

Instead, we can “dummy” the period of the event, which then allows for
an intercept shift (or, with interactions, for a slope shift) during the
unusual period. The tests for significance of the dummy coefficients
permit us to identify the importance of the period, and justify its special
treatment.

We may want to test that the relationship between inflation and
unemployment (the “Phillips curve”) is the same in Republican and
Democratic presidential administrations; this may readily be done with
a dummy for one party, added to the equation and interacted to allow
for a slope change between the two parties’ equations.
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Functional form, dummy variables, and index numbers

Dummy variables are also used widely in financial research, to conduct
event studies: models in which a particular event, such as the
announcement of a takeover bid, is hypothesized to trigger “abnormal”
returns to the stock.

In this context, high-frequency (e.g. daily) data on stock returns are
analyzed, with a dummy set equal to 1 on and after the date of the
takeover bid announcement. A test for the significance of the dummy
coefficient allows us to analyze the importance of this event.
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Functional form, dummy variables, and index numbers

Creation of these dummies in Stata is made easier by the tin()
function (read: tee-in). If the data set has been established as a time
series via tsset, you may refer to natural time periods in generating
new variables or specifying the estimation sample.

For instance,
gen prefloat = (tin(1959q1,1971q3))
will generate a dummy for that pre-Smithsonian period, and a model
may be estimated over a subset of the observations via
regress ... if tin(1970m1,1987m9)
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Functional form, dummy variables, and index numbers Index numbers

In working with time series data, we are often concerned with series
measured as index numbers, such as the Consumer Price Index, GDP
Deflator, or Index of Industrial Production. The price series are often
needed to generate real values from nominal magnitudes.

The usual concerns must be applied in working with these index
number series, some of which have been rebased (e.g. from
1982=100 to 1987=100) and must be adjusted accordingly for a new
base period and value.
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Functional form, dummy variables, and index numbers Index numbers

Interesting implications arise when we work with “real” magnitudes,
expressed in logs: for instance, labor supply is usually modeled as
depending on the real wage,

(
w
p

)
. If we express these variables in

logs, the log of the real wage becomes log w − log p.

Regressing the log of hours worked on a single variable,
(log w − log p), is a restricted version of a regression in which the two
variables are entered separately. In that regression, the coefficients
will almost surely differ in their absolute value. But economic theory
states that only the real wage should influence workers’ decisions; they
should not react to changes in its components. Workers should not be
willing to supply more hours of labor if offered a higher nominal wage
that only makes up for a decrease in their purchasing power.
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Trends and seasonality

Trends and seasonality

Many economic time series are trending: growing over time. One of
the reasons for very high R2 values in many time series regressions is
the common effect of time on many of the variables considered.

This brings a challenge to the analysis of time series data. When we
estimate a model in which we consider the effect of several causal
factors, we must be careful to account for the co-movements that may
merely reflect trending behavior. Many macroeconomic series reflect
upward trends, while others, such as the cost of memory for personal
computers or flash drives, exhibit strong downward trends.
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Trends and seasonality

We can readily model a linear trend by merely running a regression of
the series on t , in which the slope coefficient is then ∂y/∂t . To create a
time trend in Stata, you can just generate t = _n, where _n is the
observation number. If the data have been tsset, you may use the
calendar variable as the time trend.

It does not matter where a trend starts, or the units in which it is
expressed; a trend is merely a series that changes by a fixed amount
per time period.
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Trends and seasonality

A linear trend may prove to be inadequate for many economic series,
which we might expect on a theoretical basis to exhibit constant
growth, not constant increments. In this case, an exponential trend
may readily be estimated (for strictly positive y) by regressing log y on
t . The slope coefficient is then a direct estimate of the percentage
growth rate per period.

We could also use a polynomial model, such as a quadratic time trend,
regressing the level of y on t and t2.
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Trends and seasonality

Nothing about trending economic variables violates our basic
assumptions for the estimation of OLS regression models with time
series data. However, it is important to consider whether significant
trends exist in the series. If we ignore a common trend, we may be
estimating a spurious regression, in which both y and the X variables
appear to be correlated because of the influence on both of an omitted
factor, the passage of time.
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Trends and seasonality

We can readily guard against this by including a time trend (linear or
quadratic) in the regression. If it is needed, it will appear to be a
significant determinant of y . In some cases, inclusion of a time trend
can actually highlight a meaningful relationship between y and one or
more x variables, as their coefficients are now estimates of their
co-movement with y , ceteris paribus: that is, net of the trend in y .
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Trends and seasonality

We may link the concept of a regression inclusive of trend to the
common practice of analyzing detrended data. Rather than regressing
y on X and t , we could remove the trend from y and each of the
variables in X .

How? Regress each variable on t , and save the residuals (if desired,
adding back the original mean of the series). These are then the
detrended y (y∗) and the detrended explanatory variables X ∗ (not
including a trend term).
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Trends and seasonality

If we now estimate the regression of y∗ on X ∗, the slope coefficients’
point and interval estimates are exactly equal to those from the original
regression of y on X and t . Thus, it does not matter whether we first
detrend the series, and run the regression, or estimate the regression
with trend included. Those are equivalent strategies, and since the
latter is less burdensome, it may be preferred.
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Trends and seasonality Seasonal adjustment

Another issue that may often arise in time series data of quarterly,
monthly or higher frequency is seasonality. Some economic variables
are provided in seasonally adjusted form. In databanks and statistical
publications, the acronym SAAR (seasonally adjusted at annual rate)
is often found. Other economic series are provided in their raw form,
often labelled NSA, or not seasonally adjusted.
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Trends and seasonality Seasonal adjustment

Seasonal factors play an important role in many series. Naturally, they
reflect the seasonal patterns in many commodities’ measures:
agricultural prices differ between harvest periods and out-of-season
periods, fuel prices differ due to winter demand for oil and natural gas,
or summer demand for gasoline. But there are seasonal factors in
many series we might consider with a more subtle interpretation.

Retail sales, naturally, are very high in the holiday period: but so is the
demand for cash, since shoppers and gift-givers will often need more
cash at that time. Payrolls in the construction industry will exhibit
seasonal patterns, as construction falls off in cold climates, but may be
stimulated by a mild winter. Many financial series will reflect the
adjustments made by financial firms to “dress up” quarter-end balance
sheets and improve apparent performance.
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Trends and seasonality Seasonal adjustment

If all of the data series we are using in a model have been seasonally
adjusted by their producers, we may not be concerned about
seasonality. But often we will want to use some NSA series, or be
worried about the potential for seasonal effects. In this case, just as we
dealt with trending series by including a time trend, we should
incorporate seasonality into the regression model by including a set of
seasonal dummies.

For quarterly data, we will need 3 dummies; for monthly data, 11
dummies; and so on. If we are using business-daily data such as
financial time series, we may want to include “day-of-week” effects,
with dummies for four of the five business days.
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Trends and seasonality Seasonal adjustment

To use seasonal dummies in quarterly data, we need a variable that
identifies the calendar quarter. If the data have been tsset using the
calendar variable yq, we can

generate qtr = quarter(dofq(yq))

which produces a variable taking on values 1, 2, 3, 4. We may then
include the factor variable i.qtr in a regression, which will include
three of the indicators.
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Trends and seasonality Seasonal adjustment

If we regress a time series on i.qtr, the residuals will be the
seasonally adjusted series, and the F -statistic of the equation is a test
for the presence of seasonality. To restore the scale of the original
series, add its mean:

summarize y, mean
scalar mu = r(mean)
regress y i.qtr
predict ysa, residual
replace ysa = ysa + mu

The series ysa is the seasonally adjusted version of the original y
series.
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Trends and seasonality Seasonal adjustment

This form of seasonal adjustment will consider the effect of each
season to be linear; if we wanted to consider multiplicative seasonality,
e.g. sales are always 10% higher in the fourth quarter, that could be
achieved by regressing log y on the seasonal dummies.

A similar approach could be used for monthly data, using the month()
and dofm() functions.

A trend could be included in either form of the regression to capture
trending behavior over and above seasonality; in the latter regression,
of course, it would represent an exponential (constant growth) trend.
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Trends and seasonality Trend plus seasonal

Just as with a trend, we may either deseasonalize each series (by
regressing it on seasonal dummies, saving the residuals, and adding
the mean of the original series) and regress seasonally adjusted series
on each other. Alternatively, we may include a set of seasonal
dummies (leaving one out) in a regression of y on X , and test for the
joint significance of the seasonal dummies. The coefficients on the X
variables will be identical, in both point and interval form, using either
strategy.
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