Solutions to Problem Set 3 (Due March 11)

EC 2228 03, Spring 2015
Prof. Baum, Mr. Zhang

Maximum number of points for Problem set 3 is: 76

Problem 4.1

(i) (2 pts.) Heteroskedasticity generally causes the t statistics not to have at distribution under H_{0}. Homoskedasticity is one of the CLM assumptions.
(ii) (2 pts.) The CLM assumptions contain no mention of the sample correlations among independent variables, except to rule out the case where the correlation is one. If two independent variables are perfectly correlated, then the X matrix is not of full rank and we have a problem. Otherwise, partial correlations are acceptable (and likely).
(iii) (2 pts.) An important omitted variable violates Assumption MLR. 4 (zero conditional mean), so then the t statistics dont have a t distribution under H_{0}. For example, suppose we are trying to predict consumption of cigarettes. On the right hand side, we include income but we do not include education. Since income and education are almost surely positively correlated, then the errors would not have zero conditional mean. This would lead to biased estimates of β.

Problem 4.3

(i) (4 pts.) Holding profmarg fixed,

$$
\Delta r \widehat{\text { dintents }}=.321 \Delta \log (\text { sales })=(.321 / 100)[100 \Delta \log (\text { sales })] \approx .00321(\% \Delta \text { sales })
$$

Therefore, if $\% \Delta$ sales $=10, \Delta r \widehat{\text { dinten } s} \approx .032$, or only about $3 / 100$ of a percentage point. For such a large percentage increase in sales, this seems like a very small effect.
(ii) (4 pts .) $H_{0}: \beta_{1}=0$ versus $H_{1}: \beta_{1}>0$, where β_{1} is the population slope on $\log ($ sales $)$. The t statistic is $.321 / .216 \approx 1.486$. The 5% critical value for a one-tailed test, with $d f=$ $32-3=29$, is obtained from Table G. 2 as 1.699; so we cannot reject H_{0} at the 5% level. But the 10% critical value is 1.311 ; since the t statistic is above this value, we reject H_{0} in favor of H_{1} at the 10% level.
(iii) (2 pts.) With an increase of profit margin by 1 percentage point, expenditures on $R \& D$ rise by 0.05 percentage points. Economically that is quite significant, as given a 10% increase in profit margin then they will increase expenditures on $R \& D$ by 0.5 percentage point.
(iv) (2 pts.) Not really. Its t statistic is only $0.05 / 0.046=1.087$, so we are not able to reject at even the 10% level.

Problem 4.5

(i) (2 pts.) . $412 \pm 1.96(.094)$, or about $[.228, .596]$.
(ii) (2 pts.) No, because the value .4 is well inside the 95% CI.
(iii)(2 pts.) Yes, because 1 is well outside the 95% CI.

Problem 4.12

(i) (4 pts.) The coefficient on lexpend means that the pass rate (math10) increases by 11.16% p, as the expenditure increases by 100% (1.00). Hence, if expend increases by 10% (0.1), then the estimated percentage point change in math 10 is $1.116=11.16 \times 0.1$. And the negative intercept means that the estimation is not precise, since a sufficiently low lexpend predicts a negative pass rate, even though the pass rate cannot be negative in reality. It seems because of low variation of explanatory variable (lexpend). As noted, the minimum value of lexpend is 8.11 , which is very close to the mean value (8.37). And notice that we cannot evaluate the estimation at the zero of expend, since we dont know the value of $\log (0)$.
(ii) (4 pts.) Yes. Schools in wealthy towns probably tend to spend more money than in poor district. And the test pass rate can be higher in a wealthy town, as parents can put more effort or out-of-school resources on their children. It implies the common variation of lexpend and math10 is actually partly accounted by other factors. Hence, if expenditure were randomly assigned to schools to estimate the effect of the expenditure per se, then R -squared would be less.
(iii)(2 pts.) The coefficient on lexpend is lower. But it is still statistically significant at the 1% level, as its t-statistic $(7.75 / 3.04=2.55)$ is still higher than the critical value (2.33).
(iv)(2 pts.) The R-squared is much higher. Hence, we can think the additional two variables improve the models prediction. Beyond those variables, the number of teachers or the number of students per a teacher can be a good candidate as an explanatory variable.

Problem C 4.1

(i) (2 pts.) Holding other factors fixed,

$$
\Delta v o t e A=\beta_{1} \Delta \log (\text { expend } A)=\left(\beta_{1} / 100\right)[100 \Delta \log (\text { expend } A)] \approx\left(\beta_{1} / 100\right)(\% \Delta \operatorname{expend} A)
$$

So a . 01 increase in expenditure will result in a $\left(\beta_{1} / 100\right) *(100 * .01)=.01 \beta_{1}$ change in the vote for A.
(ii) (2 pts.) The null hypothesis is $H_{0}: \beta_{2}=-\beta_{1}$, which means a $z \%$ increase in expenditure by A and a $z \%$ increase in expenditure by B leaves voteA unchanged. We can equivalently write $H_{0}: \beta_{1}+\beta_{2}=0$.
(iii) (4 pts.) The estimated equation (with standard errors in parentheses below estimates) is

$$
\begin{gathered}
\widehat{\text { vote } A}=45.08(3.93)+6.08(0.38) \log (\text { expend } A)-6.62(0.39) \log (\text { expend } B)+.15(0.06) \text { prtystr } A \\
n=173, R^{2}=.793
\end{gathered}
$$

The coefficient on $\log ($ expend A) is very significant (t statistic ≈ 15.92), as is the coefficient on $\log ($ expend $B)$ (t statistic $\approx-17.45)$. The estimates imply that a 10%, ceteris paribus, increase in spending by candidate A increases the predicted share of the vote going to A by about .61 percentage points. [Recall that, holding other factors fixed, $\triangle \widehat{v o t e} A \approx$ $(6.083 / 100) \% \Delta \log (\operatorname{expend} A)]$ Similarly, a 10% ceteris paribus increase in spending by B reduces As vote by about .66 percentage points. These effects certainly cannot be ignored.

```
. reg voteA lexpendA lexpendB prtystrA
```

Source \|	SS	df	MS
Model \|	38405.1089	3	12801.703
Residual \|	10052.1396	169	59.4801161
Total \|	48457.2486	172	281.728189

Number of obs	$=173$
$\mathrm{~F}(3, \quad 169)$	$=215.23$
Prob $>\mathrm{F}$	$=0.0000$
R-squared	$=0.7926$
Adj R-squared	$=0.7889$
Root MSE	$=7.7123$

voteA I	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
lexpendA \|	6.083316	. 38215	15.92	0.000	5.328914	6.837719
lexpendB \|	-6.615417	. 3788203	-17.46	0.000	-7.363247	-5.867588
prtystrA \|	. 1519574	. 0620181	2.45	0.015	. 0295274	. 2743873
_cons \|	45.07893	3.926305	11.48	0.000	37.32801	52.82985

> test lexpend $A=-1$ expendB (1) lexpend $A+$ lexpendB $=0$ $$
\begin{aligned}1,169) & =1.00 \\ \text { Prob }>\mathrm{F} & =0.3196\end{aligned}
$$

While the coefficients on $\log ($ expend $A)$ and $\log ($ expend $B)$ are of similar magnitudes (and opposite in sign, as we expect), we do not have the standard error of $\hat{\beta}_{1}+\hat{\beta}_{2}$, which is what we would need to test the hypothesis from part (ii).
(iv) (2 pts.) We fail to reject $\beta_{1}+\beta_{2}=0$.

Problem C4. 3

(i) (2 pts.) The estimated model is

```
. regress lprice sqrft bdrms
```

Source \|	SS	df	MS
Model \|	4.71671468	2	2.35835734
Residual	3.30088884	85	.038833986
Total \|	8.01760352	87	.092156362

Number of obs $=\quad 88$
F 2,85) $=60.73$
Prob $>\mathrm{F}=0.0000$
R -squared $=0.5883$
Adj R -squared $=0.5786$
Root MSE $=.19706$

1price \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
sqrft \|	. 0003794	. 0000432	8.78	0.000	. 0002935	. 0004654
bdrms \|	. 0288844	. 0296433	0.97	0.333	-. 0300543	. 0878232
_cons I	4.766027	. 0970445	49.11	0.000	4.573077	4.958978

$$
\text { lo大(price })=4.766(0.10)+.000379(.000043) s q r f t+.0289(.0296) b d r m s
$$

$$
n=88, R^{2}=.588
$$

Therefore, $\hat{\theta}_{1}=150(.000379)+.0289=.858$, which means that an additional 150 square foot bedroom increases the predicted price by about 8.6%.
(ii) (2 pts.) $\beta_{2}=\theta_{1}-150 \beta_{1}$, and so $\log ($ price $)=\beta_{0}+\beta_{1} \operatorname{sqrft}+\left(\theta_{1}-150 \beta_{1}\right) b d r m s+u=$ $\beta_{0}+\beta_{1}(s q r f t-150 b d r m s)+\theta_{1} b d r m s+u$.
(iii) (2 pts.) From part (ii) we run the regression

```
. gen sqrft150=sqrft-150*bdrms
. regress lprice sqrft150 bdrms
\begin{tabular}{c|crr} 
Source | & SS & df & MS \\
\hline Model | & 4.71671468 & 2 & 2.35835734 \\
Residual | & 3.30088884 & 85 & .038833986 \\
Total | & 8.01760352 & 87 & .092156362
\end{tabular}
Number of obs = 88
F( 2, 85) = 60.73
Prob > F = 0.0000
R-squared = 0.5883
Adj R-squared = 0.5786
Root MSE = . }1970
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline lprice | & Coef. & Std. Err. & t & \(P>|t|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline sqrft150 & . 0003794 & . 0000432 & 8.78 & 0.000 & . 0002935 & . 0004654 \\
\hline bdrms | & . 0858013 & . 0267675 & 3.21 & 0.002 & . 0325804 & . 1390223 \\
\hline
\end{tabular}
```

Really, $\hat{\theta}_{1}=.0858$; note we also get $s e\left(\hat{\theta}_{1}\right)=.0268$. The 95% confidence interval is .0326 to 1390 (or about 3.3% to 13.9%).

Problem C4.5

(i) (4 points) If we drop rbisyr the estimated equation becomes

$$
\begin{array}{rc}
\widehat{\log (\text { salary })}=\begin{array}{c}
11.02 \\
(0.27)
\end{array}+\begin{array}{cccc}
.0677 & \text { years }+ & .0158 & \text { gamesyr } \\
& +\begin{array}{c}
.0121)
\end{array} \quad \text { bavg }+ & (.0016) & \\
& (.0359 & \text { hrunsyr } \\
& n=353, R^{2}=.625 .
\end{array}
\end{array}
$$

Now hrunsyr is very statistically significant (t-statistic ≈ 4.99), and its coefficient has increased by about two and one-half times.
(ii) (4 points) The equation with runsyr, fldperc, and sbasesyr added is

$$
\begin{aligned}
& n=353, R^{2}=.639 \text {. }
\end{aligned}
$$

Of the three additional independent variables, only runsyr is statistically significant (t statistic $=.0174 / .0051 \approx 3.41)$. The estimate implies that one more run per year, other factors fixed, increases predicted salary by about 1.74%, a substantial increase. The stolen bases variable even has the wrong sign with a t-statistic of about -1.23 , while fldperc has a t-statistic of only .5. Most major league baseball players are pretty good fielders; in fact, the smallest fldperc is 800 (which means .800). With relatively little variation in fldperc, it is perhaps not surprising that its effect is hard to estimate.
(iii) (4 points) From their t-statistics, bavg, fldperc, and sbasesyr are individually insignificant. The F-statistic for their joint significance (with 3 and 345 df) is about .69 with p -value $\approx .56$. Therefore, these variables are jointly very insignificant.

Problem C4.9

(i) (2 points) The results from the OLS regression, with standard errors in parentheses, are

$$
\begin{gathered}
\widehat{\log (\text { psod } a)}=\begin{array}{c}
-1.46 \\
(0.29)
\end{array}+\underset{(.031)}{.073} \text { prpblck }+\underset{(.027)}{.137} \log (\text { income }) \\
n=401 R^{2}=.087 .
\end{gathered}
$$

The p-value for testing $H_{0}: \beta_{1}=0$ against the two-sided alternative is about .018 , so that we reject H_{0} at the 5% level but not at the 1% level.
(ii) (2 points) The correlation is about -.84, indicating a strong degree of multicollinearity. Yet each coefficient is very statistically significant: the t statistic for $\hat{\beta} \log$ (income) is about 5.1 and that for $\hat{\beta}$ prppov is about 2.86 (two-sided p-value $=.004$).
(iii) (2 points) The OLS regression results when $\log ($ hseval $)$ is added are

$$
\begin{array}{cc}
\widehat{\log (\text { psod } a)}=\begin{array}{c}
-.84 \\
(0.29)
\end{array} & +\begin{array}{c}
.098 \\
\\
\\
+ \\
\\
\\
(.029)
\end{array} \text { prpblck }-\begin{array}{cc}
.052
\end{array} \text { prppov }+\begin{array}{c}
(.038) \\
.121
\end{array} \log (\text { income }) \\
& \log (\text { hseval }) \\
& n=401 R^{2}=.184 .
\end{array}
$$

The coefficient on \log (hseval) is an elasticity: a one percent increase in housing value, holding the other variables fixed, increases the predicted price by about .12 percent. The two-sided p -value is zero to three decimal places.
(iv) (4 points) Adding \log (hseval) makes \log (income) and prppov individually insignificant (at even the 15% significance level against a two-sided alternative for \log (income), and prppov is does not have a t statistic even close to one in absolute value). Nevertheless, they are jointly significant at the 5% level because the outcome of the $F_{2,396}$ statistic is about 3.52 with p-value $=.030$. All of the control variables - log(income), prppov, and $\log ($ hseval $)-$ are highly correlated, so it is not surprising that some are individually insignificant.
(v) (2 points) Because the regression in (iii) contains the most controls, \log (hseval) is individually significant, and log(income) and prppov are jointly significant, (iii) seems the most reliable. It holds fixed three measures of income and affluence. Therefore, a reasonable estimate is that if the proportion of blacks increases by . 10 , psoda is estimated to increase by 1%, other factors held fixed.

