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Instrumental variables estimators

The IV–GMM estimator

To discuss the implementation of IV estimators and test statistics, we
consider a more general framework: an instrumental variables
estimator implemented using the Generalized Method of Moments
(GMM). As we will see, conventional IV estimators such as two-stage
least squares (2SLS) are special cases of this IV-GMM estimator.

The model:
y = Xβ + u, u ∼ (0,Ω)

with X (N × k) and define a matrix Z (N × `) where ` ≥ k . This is the
Generalized Method of Moments IV (IV-GMM) estimator.
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Instrumental variables estimators

The ` instruments give rise to a set of ` moments:

gi(β) = Z ′i ui = Z ′i (yi − xiβ), i = 1,N

where each gi is an `-vector. The method of moments approach
considers each of the ` moment equations as a sample moment, which
we may estimate by averaging over N:

ḡ(β) =
1
N

N∑
i=1

zi(yi − xiβ) =
1
N

Z ′u

The GMM approach chooses an estimate that solves ḡ(β̂GMM) = 0.
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Instrumental variables estimators Exact identification and 2SLS

If ` = k , the equation to be estimated is said to be exactly identified by
the order condition for identification: that is, there are as many
excluded instruments as included right-hand endogenous variables.
The method of moments problem is then k equations in k unknowns,
and a unique solution exists, equivalent to the standard IV estimator:

β̂IV = (Z ′X )−1Z ′y

In the case of overidentification (` > k ) we may define a set of k
instruments:

X̂ = Z (Z ′Z )−1Z ′X = PZ X

which gives rise to the two-stage least squares (2SLS) estimator

β̂2SLS = (X̂ ′X )−1X̂ ′y = (X ′PZ X )−1X ′PZ y

which despite its name is computed by this single matrix equation.
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Instrumental variables estimators The IV-GMM approach

In the 2SLS method with overidentification, the ` available instruments
are “boiled down" to the k needed by defining the PZ matrix. In the
IV-GMM approach, that reduction is not necessary. All ` instruments
are used in the estimator. Furthermore, a weighting matrix is employed
so that we may choose β̂GMM so that the elements of ḡ(β̂GMM) are as
close to zero as possible. With ` > k , not all ` moment conditions can
be exactly satisfied, so a criterion function that weights them
appropriately is used to improve the efficiency of the estimator.

The GMM estimator minimizes the criterion

J(β̂GMM) = N ḡ(β̂GMM)′W ḡ(β̂GMM)

where W is a `× ` symmetric weighting matrix.
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Instrumental variables estimators The GMM weighting matrix

Solving the set of FOCs, we derive the IV-GMM estimator of an
overidentified equation:

β̂GMM = (X ′ZWZ ′X )−1X ′ZWZ ′y

which will be identical for all W matrices which differ by a factor of
proportionality. The optimal weighting matrix, as shown by Hansen
(1982), chooses W = S−1 where S is the covariance matrix of the
moment conditions to produce the most efficient estimator:

S = E [Z ′uu′Z ] = limN→∞ N−1[Z ′ΩZ ]

With a consistent estimator of S derived from 2SLS residuals, we
define the feasible IV-GMM estimator as

β̂FEGMM = (X ′Z Ŝ−1Z ′X )−1X ′Z Ŝ−1Z ′y

where FEGMM refers to the feasible efficient GMM estimator.
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Instrumental variables estimators IV-GMM and the distribution of u

IV-GMM and the distribution of u

The derivation makes no mention of the form of Ω, the
variance-covariance matrix (vce) of the error process u. If the errors
satisfy all classical assumptions are i .i .d ., S = σ2

uIN and the optimal
weighting matrix is proportional to the identity matrix. The IV-GMM
estimator is merely the standard IV (or 2SLS) estimator.
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Instrumental variables estimators IV-GMM and the distribution of u

IV-GMM robust estimates

If there is heteroskedasticity of unknown form, we usually compute
robust standard errors in any Stata estimation command to derive a
consistent estimate of the vce. In this context,

Ŝ =
1
N

N∑
i=1

û2
i Z ′i Zi

where û is the vector of residuals from any consistent estimator of β
(e.g., the 2SLS residuals). For an overidentified equation, the IV-GMM
estimates computed from this estimate of S will be more efficient than
2SLS estimates.

Christopher F Baum (BC / DIW) IV and IV-GMM Boston College, Spring 2015 8 / 45



Instrumental variables estimators IV-GMM cluster-robust estimates

IV-GMM cluster-robust estimates

If errors are considered to exhibit arbitrary intra-cluster correlation in a
dataset with M clusters, we may derive a cluster-robust IV-GMM
estimator using

Ŝ =
M∑

j=1

û′j ûj

where
ûj = (yj − xj β̂)X ′Z (Z ′Z )−1zj

The IV-GMM estimates employing this estimate of S will be both robust
to arbitrary heteroskedasticity and intra-cluster correlation, equivalent
to estimates generated by Stata’s cluster(varname) option. For an
overidentified equation, IV-GMM cluster-robust estimates will be more
efficient than 2SLS estimates.
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Instrumental variables estimators IV-GMM HAC estimates

IV-GMM HAC estimates

The IV-GMM approach may also be used to generate HAC standard
errors: those robust to arbitrary heteroskedasticity and autocorrelation.
Although the best-known HAC approach in econometrics is that of
Newey and West, using the Bartlett kernel (per Stata’s newey), that is
only one choice of a HAC estimator that may be applied to an IV-GMM
problem.

Baum–Schaffer–Stillman’s ivreg2 (from the SSC Archive) and Stata’s
ivregress provide several choices for kernels. For some kernels, the
kernel bandwidth (roughly, number of lags employed) may be chosen
automatically in either command.
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Instrumental variables estimators Example of IV and IV-GMM estimation

Example of IV and IV-GMM estimation

We illustrate various forms of the IV estimator with a model of US real
import growth constructed with US quarterly data from a recent edition
of International Financial Statistics. The model seeks to explain the
growth rate (change in the log) of US real imports. In the initial form of
the model, we include as regressors the growth rate of real GDP, the
lagged rate of change of the REER (real effective exchange rate), and
the rate of change of real crude oil prices.
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Instrumental variables estimators Example of IV and IV-GMM estimation

We first fit the relationship with the standard 2SLS estimator, assuming
i.i.d. errors, using Baum–Schaffer–Stillman’s ivreg2 command. You
could fit the same equation with ivregress 2sls.

We model US real import growth considering that the
contemporaneous growth rate of real GDP may be endogenous to this
relationship. We use the first three lags of GDP growth as instruments
for the current growth rate. Some of the standard ivreg2 output,
relating to weak instruments, has been edited on the following slides.
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Instrumental variables estimators Example of IV and IV-GMM estimation

. ivreg2 dlrimports (dlrgdp = L(1/3).dlrgdp) ldlreer dlroilprice

IV (2SLS) estimation

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

Number of obs = 138
F( 3, 134) = 23.84
Prob > F = 0.0000

Total (centered) SS = .1872911248 Centered R2 = 0.0706
Total (uncentered) SS = .2086385951 Uncentered R2 = 0.1657
Residual SS = .1740637032 Root MSE = .03552

dlrimports Coef. Std. Err. z P>|z| [95% Conf. Interval]

dlrgdp 5.022829 .9923138 5.06 0.000 3.077929 6.967728
ldlreer -.2971572 .0931814 -3.19 0.001 -.4797895 -.114525

dlroilprice .1084789 .022928 4.73 0.000 .0635409 .153417
_cons -.0245364 .0077375 -3.17 0.002 -.0397016 -.0093713

Sargan statistic (overidentification test of all instruments): 1.999
Chi-sq(2) P-val = 0.3680

Instrumented: dlrgdp
Included instruments: ldlreer dlroilprice
Excluded instruments: L.dlrgdp L2.dlrgdp L3.dlrgdp
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Instrumental variables estimators Example of IV and IV-GMM estimation

We may fit this equation with different assumptions about the error
process. The estimates above assume i .i .d . errors. We may also
compute robust standard errors in the 2SLS context.

We then apply IV-GMM with robust standard errors. As the equation is
overidentified, the IV-GMM estimates will differ, and will be more
efficient than the robust 2SLS estimates.

Last, we may estimate the equation with IV-GMM and HAC standard
errors, using the default Bartlett kernel (as employed by Newey–West)
and a bandwidth of 5 quarters. This corresponds to four lags in the
newey command.
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Instrumental variables estimators Example of IV and IV-GMM estimation

. estimates table IID Robust IVGMM IVGMM_HAC, b(%9.4f) t(%5.2f) ///
> title("Alternative IV estimates of real US import growth") stat(rmse)

Alternative IV estimates of real US import growth

Variable IID Robust IVGMM IVGMM_HAC

dlrgdp 5.0228 5.0228 5.0197 4.6662
5.06 5.33 5.32 5.74

ldlreer -0.2972 -0.2972 -0.3337 -0.3462
-3.19 -2.31 -2.95 -3.40

dlroilprice 0.1085 0.1085 0.1067 0.1100
4.73 6.51 6.44 7.78

_cons -0.0245 -0.0245 -0.0250 -0.0232
-3.17 -3.14 -3.22 -3.66

rmse 0.0355 0.0355 0.0355 0.0337

legend: b/t

Note that the coefficients’ point estimates change when IV-GMM is
employed, and that their t-statistics are larger than those of robust IV.
The point estimates are also altered when IV-GMM with HAC VCE is
computed.
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Tests of overidentifying restrictions

Tests of overidentifying restrictions

If and only if an equation is overidentified, with more excluded
instruments than included endogenous variables, we may test whether
the excluded instruments are appropriately independent of the error
process. That test should always be performed when it is possible to
do so, as it allows us to evaluate the validity of the instruments.

A test of overidentifying restrictions regresses the residuals from an IV
or 2SLS regression on all instruments in Z . Under the null hypothesis
that all instruments are uncorrelated with u, the test has a
large-sample χ2(r) distribution where r is the number of overidentifying
restrictions.

Under the assumption of i .i .d . errors, this is known as a Sargan test,
and is routinely produced by ivreg2 for IV and 2SLS estimates. After
ivregress, the command estat overid provides the test.
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Tests of overidentifying restrictions

If we have used IV-GMM estimation in ivreg2, the test of
overidentifying restrictions becomes the Hansen J statistic: the GMM
criterion function. Although J will be identically zero for any
exactly-identified equation, it will be positive for an overidentified
equation. If it is “too large”, doubt is cast on the satisfaction of the
moment conditions underlying GMM.

The test in this context is known as the Hansen test or J test, and is
calculated by ivreg2 when the gmm2s option is employed.

The Sargan–Hansen test of overidentifying restrictions should be
performed routinely in any overidentified model estimated with
instrumental variables techniques. Instrumental variables techniques
are powerful, but if a strong rejection of the null hypothesis of the
Sargan–Hansen test is encountered, you should strongly doubt the
validity of the estimates.
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Tests of overidentifying restrictions

For instance, consider a variation of the IV-GMM model estimated
above (with robust standard errors) and focus on the test of
overidentifying restrictions provided by the Hansen J statistic.

In this form of the model, we also include the lagged growth rate of real
oil prices as an excluded instrument. The model is overidentified by
three degrees of freedom, as there is one endogenous regressor and
four excluded instruments. We see that the J statistic clearly rejects its
null, casting doubt on our choice of instruments.
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Tests of overidentifying restrictions

. ivreg2 dlrimports (dlrgdp = L(1/3).dlrgdp L.dlroilprice) ldlreer dlroilprice,
> robust gmm2s

2-Step GMM estimation

Estimates efficient for arbitrary heteroskedasticity
Statistics robust to heteroskedasticity

Number of obs = 138
F( 3, 134) = 27.95
Prob > F = 0.0000

Total (centered) SS = .1872911248 Centered R2 = 0.1139
Total (uncentered) SS = .2086385951 Uncentered R2 = 0.2045
Residual SS = .1659629526 Root MSE = .03468

Robust
dlrimports Coef. Std. Err. z P>|z| [95% Conf. Interval]

dlrgdp 4.849372 .9087537 5.34 0.000 3.068247 6.630496
ldlreer -.3379459 .108448 -3.12 0.002 -.5505 -.1253917

dlroilprice .0967915 .0150484 6.43 0.000 .0672972 .1262858
_cons -.0249144 .0075339 -3.31 0.001 -.0396806 -.0101482

Hansen J statistic (overidentification test of all instruments): 10.346
Chi-sq(3) P-val = 0.0158

Instrumented: dlrgdp
Included instruments: ldlreer dlroilprice
Excluded instruments: L.dlrgdp L2.dlrgdp L3.dlrgdp L.dlroilprice
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Tests of overidentifying restrictions

We reestimate the model, retaining real oil price growth as an
exogenous variable, but including it in the estimated equation rather
than applying an exclusion restriction. The resulting J statistic now
fails to reject its null.
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Tests of overidentifying restrictions

. ivreg2 dlrimports (dlrgdp = L(1/3).dlrgdp) ldlreer dlroilprice L.dlroilprice,
> robust gmm2s

2-Step GMM estimation

Estimates efficient for arbitrary heteroskedasticity
Statistics robust to heteroskedasticity

Number of obs = 138
F( 4, 133) = 33.39
Prob > F = 0.0000

Total (centered) SS = .1872911248 Centered R2 = 0.2002
Total (uncentered) SS = .2086385951 Uncentered R2 = 0.2821
Residual SS = .1497892412 Root MSE = .03295

Robust
dlrimports Coef. Std. Err. z P>|z| [95% Conf. Interval]

dlrgdp 4.7493 .8256717 5.75 0.000 3.131013 6.367586
ldlreer -.2660648 .1157742 -2.30 0.022 -.4929782 -.0391515

dlroilprice
--. .092877 .0130212 7.13 0.000 .0673559 .1183981
L1. .0666371 .021165 3.15 0.002 .0251545 .1081197

_cons -.0230283 .0067559 -3.41 0.001 -.0362697 -.0097869

Hansen J statistic (overidentification test of all instruments): 1.816
Chi-sq(2) P-val = 0.4033

Instrumented: dlrgdp
Included instruments: ldlreer dlroilprice L.dlroilprice
Excluded instruments: L.dlrgdp L2.dlrgdp L3.dlrgdp
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Tests of overidentifying restrictions

It is important to understand that the Sargan–Hansen test of
overidentifying restrictions is a joint test of the hypotheses that the
instruments, excluded and included, are independently distributed of
the error process and that they are properly excluded from the model.

Note as well that all exogenous variables in the equation—excluded
and included—appear in the set of instruments Z . In the context of
single-equation IV estimation, they must. You cannot pick and choose
which instruments appear in which ‘first-stage’ regressions.
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

Testing a subset of overidentifying restrictions

We may be quite confident of some instruments’ independence from u
but concerned about others. In that case a GMM distance or C test
may be used. The orthog( ) option of ivreg2 tests whether a
subset of the model’s overidentifying restrictions appear to be satisfied.

This is carried out by calculating two Sargan–Hansen statistics: one for
the full model and a second for the model in which the listed variables
are (a) considered endogenous, if included regressors, or (b) dropped,
if excluded regressors. In case (a), the model must still satisfy the
order condition for identification. The difference of the two
Sargan–Hansen statistics, often termed the GMM distance or Hayashi
C statistic, will be distributed χ2 under the null hypothesis that the
specified orthogonality conditions are satisfied, with d.f. equal to the
number of those conditions.
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

We perform the C test on the estimated equation by challenging the
exogeneity of ldlreer. Is it properly considered exogenous? The
orthog() option reestimates the equation, treating it as endogenous,
and evaluates the difference in the J statistics from the two models.
Considering ldlreer as exogenous is essentially imposing one more
orthogonality condition on the GMM estimation problem.
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

. ivreg2 dlrimports (dlrgdp = L(1/3).dlrgdp) ldlreer dlroilprice L.dlroilprice,
> robust gmm2s orthog(ldlreer)

2-Step GMM estimation

Estimates efficient for arbitrary heteroskedasticity
Statistics robust to heteroskedasticity

Number of obs = 138
F( 4, 133) = 33.39
Prob > F = 0.0000

Total (centered) SS = .1872911248 Centered R2 = 0.2002
Total (uncentered) SS = .2086385951 Uncentered R2 = 0.2821
Residual SS = .1497892412 Root MSE = .03295
...

Hansen J statistic (overidentification test of all instruments): 1.816
Chi-sq(2) P-val = 0.4033

-orthog- option:
Hansen J statistic (eqn. excluding suspect orthog. conditions): 0.456

Chi-sq(1) P-val = 0.4997
C statistic (exogeneity/orthogonality of suspect instruments): 1.361

Chi-sq(1) P-val = 0.2434
Instruments tested: ldlreer

Instrumented: dlrgdp
Included instruments: ldlreer dlroilprice L.dlroilprice
Excluded instruments: L.dlrgdp L2.dlrgdp L3.dlrgdp
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

It appears that ldlreer may be considered exogenous in this
specification.

A variant on this strategy is implemented by the endog( ) option of
ivreg2, in which one or more variables considered endogenous can
be tested for exogeneity. The C test in this case will consider whether
the null hypothesis of their exogeneity is supported by the data.

If all endogenous regressors are included in the endog( ) option, the
test is essentially a test of whether IV methods are required to
estimate the equation. If OLS estimates of the equation are consistent,
they should be preferred. In this context, the test is equivalent to a
(Durbin–Wu–)Hausman test comparing IV and OLS estimates, as
implemented by Stata’s hausman command with the sigmaless
option. Using ivreg2, you need not estimate and store both models
to generate the test’s verdict.
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

For instance, with the model above, we might question whether IV
techniques are needed. We can conduct the C test via:

ivreg2 dlrimports (dlrgdp = L(1/3).dlrgdp) ldlreer ///
dlroilprice L.dlroilprice, robust gmm2s endog(dlrgdp)

where the endog(dlrgdp) option tests the null hypothesis that the
variable can be treated as exogenous in this model, rather than as an
endogenous variable.
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

. ivreg2 dlrimports (dlrgdp = L(1/3).dlrgdp) ldlreer dlroilprice L.dlroilprice,
> ///
> robust gmm2s endog(dlrgdp)

2-Step GMM estimation

Estimates efficient for arbitrary heteroskedasticity
Statistics robust to heteroskedasticity

Number of obs = 138
F( 4, 133) = 33.39
Prob > F = 0.0000

Total (centered) SS = .1872911248 Centered R2 = 0.2002
Total (uncentered) SS = .2086385951 Uncentered R2 = 0.2821
Residual SS = .1497892412 Root MSE = .03295

...

Hansen J statistic (overidentification test of all instruments): 1.816
Chi-sq(2) P-val = 0.4033

-endog- option:
Endogeneity test of endogenous regressors: 11.736

Chi-sq(1) P-val = 0.0006
Regressors tested: dlrgdp

Instrumented: dlrgdp
Included instruments: ldlreer dlroilprice L.dlroilprice
Excluded instruments: L.dlrgdp L2.dlrgdp L3.dlrgdp
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Tests of overidentifying restrictions Testing a subset of overidentifying restrictions

In this context, it appears that we cannot consistently estimate this
equation with OLS techniques, as the null hypothesis that dlrgdp can
be treated as exogenous is strongly rejected by the data.
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Testing for weak instruments

The weak instruments problem

Instrumental variables methods rely on two assumptions: the excluded
instruments are distributed independently of the error process, and
they are sufficiently correlated with the included endogenous
regressors. Tests of overidentifying restrictions address the first
assumption, although we should note that a rejection of their null may
be indicative that the exclusion restrictions for these instruments may
be inappropriate. That is, some of the instruments have been
improperly excluded from the regression model’s specification.
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Testing for weak instruments

The specification of an instrumental variables model asserts that the
excluded instruments affect the dependent variable only indirectly,
through their correlations with the included endogenous variables. If
an excluded instrument exerts both direct and indirect influences on
the dependent variable, the exclusion restriction should be rejected.
This can be readily tested by including the variable as a regressor.
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Testing for weak instruments

To test the second assumption—that the excluded instruments are
sufficiently correlated with the included endogenous regressors—we
should consider the goodness-of-fit of the “first stage” regressions
relating each endogenous regressor to the entire set of instruments.

It is important to understand that the theory of single-equation (“limited
information”) IV estimation requires that all columns of X are
conceptually regressed on all columns of Z in the calculation of the
estimates. We cannot meaningfully speak of “this variable is an
instrument for that regressor” or somehow restrict which instruments
enter which first-stage regressions. Stata’s ivregress or ivreg2 will
not let you do that because such restrictions only make sense in the
context of estimating an entire system of equations by full-information
methods (for instance, with reg3).
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Testing for weak instruments

The first and ffirst options of ivreg2 (or the first option of
ivregress) present several useful diagnostics that assess the
first-stage regressions. If there is a single endogenous regressor,
these issues are simplified, as the instruments either explain a
reasonable fraction of that regressor’s variability or not. With multiple
endogenous regressors, diagnostics are more complicated, as each
instrument is being called upon to play a role in each first-stage
regression.

With sufficiently weak instruments, the asymptotic identification status
of the equation is called into question. An equation identified by the
order and rank conditions in a finite sample may still be effectively
unidentified or numerically unidentified.
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Testing for weak instruments

As Staiger and Stock (Econometrica, 1997) show, the weak
instruments problem can arise even when the first-stage t- and F -tests
are significant at conventional levels in a large sample. In the worst
case, the bias of the IV estimator is the same as that of OLS, IV
becomes inconsistent, and instrumenting only aggravates the problem.
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Testing for weak instruments

Beyond the informal “rule-of-thumb” diagnostics such as F > 10,
ivreg2 computes several statistics that can be used to critically
evaluate the strength of instruments. We can write the first-stage
regressions as

X = Z Π + v

With X1 as the endogenous regressors, Z1 the excluded instruments
and Z2 as the included instruments, this can be partitioned as

X1 = [Z1Z2] [Π′11Π′12]′ + v1

The rank condition for identification states that the L × K1 matrix Π11
must be of full column rank.
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Testing for weak instruments The Anderson canonical correlation statistic

We do not observe the true Π11, so we must replace it with an
estimate. Anderson’s (1984) approach to testing the rank of this matrix
(or that of the full Π matrix) considers the canonical correlations of the
X and Z matrices. If the equation is to be identified, all K of the
canonical correlations will be significantly different from zero.

The squared canonical correlations can be expressed as eigenvalues
of a matrix. Anderson’s CC test considers the null hypothesis that the
minimum canonical correlation is zero. Under the null, the test statistic
is distributed χ2 with (L − K + 1) d.f., so it may be calculated even for
an exactly-identified equation. Failure to reject the null suggests the
equation is unidentified. ivreg2 routinely reports this Lagrange
Multiplier (LM) statistic.
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Testing for weak instruments The Cragg–Donald statistic

The C–D statistic is a closely related test of the rank of a matrix. While
the Anderson CC test is a LR test, the C–D test is a Wald statistic, with
the same asymptotic distribution. The C–D statistic plays an important
role in Stock and Yogo’s work (see below). Both the Anderson and
C–D tests are reported by ivreg2 with the first option.

Research by Kleibergen and Paap (KP) (J. Econometrics, 2006) has
developed a robust version of a test for the rank of a matrix: e.g.
testing for underidentification. The statistic has been implemented by
Kleibergen and Schaffer as command ranktest, which is part of the
ivreg2 package. If non-i .i .d . errors are assumed, the ivreg2 output
contains the K–P rk statistic in place of the Anderson canonical
correlation statistic as a test of underidentification.
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Testing for weak instruments The Cragg–Donald statistic

The canonical correlations may also be used to test a set of
instruments for redundancy by considering their statistical significance
in the first stage regressions. This can be calculated, in robust form, as
a K–P LM test. The redundant( ) option of ivreg2 allows a set of
excluded instruments to be tested for relevance, with the null
hypothesis that they do not contribute to the asymptotic efficiency of
the equation.
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Testing for weak instruments The Stock and Yogo approach

Stock and Yogo (Camb. U. Press festschrift, 2005) propose testing for
weak instruments by using the F -statistic form of the C–D statistic.
Their null hypothesis is that the estimator is weakly identified in the
sense that it is subject to bias that the investigator finds unacceptably
large.

Their test comes in two flavors: maximal relative bias (relative to the
bias of OLS) and maximal size. The former test has the null that
instruments are weak, where weak instruments are those that can lead
to an asymptotic relative bias greater than some level b. This test uses
the finite sample distribution of the IV estimator, and can only be
calculated where the appropriate moments exist (when the equation is
suitably overidentified: the mth moment of an IV estimator exists iff
m < (L − K + 1)). The test is routinely reported in ivreg2 and
ivregress output when it can be calculated, with the relevant critical
values calculated by Stock and Yogo.
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Testing for weak instruments The Stock and Yogo approach

The second test proposed by Stock and Yogo is based on the
performance of the Wald test statistic for the endogenous regressors.
Under weak identification, the test rejects too often. The test statistic is
based on the rejection rate r tolerable to the researcher if the true
rejection rate is 5%. Their tabulated values consider various values for
r . To be able to reject the null that the size of the test is unacceptably
large (versus 5%), the Cragg–Donald F statistic must exceed the
tabulated critical value.

The Stock–Yogo test statistics, like others discussed above, assume
i .i .d . errors. The Cragg–Donald F can be robustified in the absence of
i .i .d . errors by using the Kleibergen–Paap rk statistic, which ivreg2
reports in that circumstance.

Christopher F Baum (BC / DIW) IV and IV-GMM Boston College, Spring 2015 40 / 45



LIML and GMM-CUE estimation

LIML and GMM-CUE

OLS and IV estimators are special cases of k-class estimators: OLS
with k = 0 and IV with k = 1. Limited-information maximum likelihood
(LIML) is another member of this class, with k chosen optimally in the
estimation process. Like any ML estimator, LIML is invariant to
normalization. In an equation with two endogenous variables, it does
not matter whether you specify y1 or y2 as the left-hand variable.

One of the other virtues of the LIML estimator is that it has been found
to be more resistant to weak instruments problems than the IV
estimator. On the down side, it makes the distributional assumption of
normally distributed (and i .i .d .) errors. ivreg2 produces LIML
estimates with the liml option, and liml is a subcommand for official
Stata’s ivregress.
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LIML and GMM-CUE estimation

If the i .i .d . assumption of LIML is not reasonable, you may use the
GMM equivalent: the continuously updated GMM estimator, or CUE
estimator. In ivreg2, the cue option combined with robust,
cluster and/or bw( ) options specifies that non-i .i .d . errors are to
be modeled. GMM-CUE requires numerical optimization, and may
require many iterations to converge.

ivregress provides an iterated GMM estimator, which is not the
same estimator as GMM-CUE.
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Testing for i.i.d. errors in an IV context

Testing for i .i .d . errors in IV

In the context of an equation estimated with instrumental variables, the
standard diagnostic tests for heteroskedasticity and autocorrelation are
generally not valid.

In the case of heteroskedasticity, Pagan and Hall (Econometric
Reviews, 1983) showed that the Breusch–Pagan or Cook–Weisberg
tests (estat hettest) are generally not usable in an IV setting.
They propose a test that will be appropriate in IV estimation where
heteroskedasticity may be present in more than one structural
equation. Mark Schaffer’s ivhettest, part of the ivreg2 suite,
performs the Pagan–Hall test under a variety of assumptions on the
indicator variables. It will also reproduce the Breusch–Pagan test if
applied in an OLS context.
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Testing for i.i.d. errors in an IV context

In the same token, the Breusch–Godfrey statistic used in the OLS
context (estat bgodfrey) will generally not be appropriate in the
presence of endogenous regressors, overlapping data or conditional
heteroskedasticity of the error process. Cumby and Huizinga
(Econometrica, 1992) proposed a generalization of the BG statistic
which handles each of these cases.

Their test is actually more general in another way. Its null hypothesis of
the test is that the regression error is a moving average of known order
q ≥ 0 against the general alternative that autocorrelations of the
regression error are nonzero at lags greater than q. In that context, it
can be used to test that autocorrelations beyond any q are zero. Like
the BG test, it can test multiple lag orders. The C–H test is available as
Baum and Schaffer’s ivactest routine, part of the ivreg2 suite.
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Testing for i.i.d. errors in an IV context

For more details on IV and IV-GMM, please see

Enhanced routines for instrumental variables/GMM estimation and
testing. Baum, C.F., Schaffer, M.E., Stillman, S., Stata Journal
7:4, 2007.

An Introduction to Modern Econometrics Using Stata, Baum, C.F.,
Stata Press, 2006 (particularly Chapter 8).

Instrumental variables and GMM: Estimation and testing. Baum,
C.F., Schaffer, M.E., Stillman, S., Stata Journal 3:1–31, 2003.

Both of the Stata Journal papers are freely downloadable from
http://stata-journal.com.
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