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Motivation

Motivation

Standard linear regression techniques summarize the average
relationship between a set of regressors and the outcome variable
based on the conditional mean function E(y |x). This provides only a
partial view of the relationship, as we might be interested in describing
the relationship at different points in the conditional distribution of y .
Quantile regression provides that capability.

Analogous to the conditional mean function of linear regression, we
may consider the relationship between the regressors and outcome
using the conditional median function Qq(y |x), where the median is the
50th percentile, or quantile q, of the empirical distribution. The quantile
q ∈ (0,1) is that y which splits the data into proportions q below and
1− q above: F (yq) = q and yq = F−1(q): for the median, q = 0.5.
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Motivation

If εi is the model prediction error, OLS minimizes
∑

i e2
i . Median

regression, also known as least-absolute-deviations (LAD) regression,
minimizes

∑
i |ei |. Quantile regression minimizes a sum that gives

asymmetric penalties (1− q)|ei | for overprediction and q|ei | for
underprediction. Although its computation requires linear programming
methods, the quantile regression estimator is asymptotically normally
distributed.

Median regression is more robust to outliers than least squares
regression, and is semiparametric as it avoids assumptions about the
parametric distribution of the error process.
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Motivation

Just as regression models conditional moments, such as predictions of
the conditional mean function, we may use quantile regression to
model conditional quantiles of the joint distribution of y and x .

Let ŷ(x) denote the predictor function and e(x) = y − ŷ(x) denote the
prediction error. Then

L(e(x)) = L(y − ŷ(x))

denotes the loss associated with the prediction errors. If L(e) = e2, we
have squared error loss, and least squares is the optimal predictor.

If L(e) = |e|, the optimal predictor is the conditional median, med(y |x),
and the optimal predictor is that β̂ which minimizes

∑
i |yi − x ′i β|.
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Motivation

Both the squared-error and absolute-error loss functions are
symmetric; the sign of the prediction error is not relevant. If the
quantile q differs from 0.5, there is an asymmetric penalty, with
increasing asymmetry as q approaches 0 or 1.

Advantages of quantile regression (QR): while OLS can be inefficient if
the errors are highly non-normal, QR is more robust to non-normal
errors and outliers. QR also provides a richer characterization of the
data, allowing us to consider the impact of a covariate on the entire
distribution of y , not merely its conditional mean.

Furthermore, QR is invariant to monotonic transformations, such as
log(·), so the quantiles of h(y), a monotone transform of y , are
h(Qq(y)), and the inverse transformation may be used to translate the
results back to y . This is not possible for the mean as
E [h(y)] 6= h[E(y)].
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Implementation

Implementation

The quantile regression estimator for quantile q minimizes the
objective function

Q(βq) =
N∑

i:yi≥x ′i β

q|yi − x ′i βq|+
N∑

i:yi<x ′i β

(1− q)|yi − x ′i βq|

This nondifferentiable function is minimized via the simplex method,
which is guaranteed to yield a solution in a finite number of iterations.
Although the estimator is proven to be asymptotically normal with an
analytical VCE, the expression for the VCE is awkward to estimate.
Bootstrap standard errors are often used in place of analytic standard
errors.
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Implementation

The Stata command qreg estimates a multivariate quantile regression
with analytic standard errors. By default the quantile is 0.5, the median.
A different quantile may be specified with the quantile() option.

The bsqreg command estimates the model with bootstrap standard
errors, retaining the assumption of independent errors but relaxing the
assumption of identically distributed errors; thus they are analogous to
robust standard errors in linear regression.
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Implementation

The iqreg command performs interquantile range regression:
regression of the difference in quantiles. By default, the quantiles
(0.25, 0.75) produce interquartile range estimates. Bootstrap standard
errors are produced.

The sqreg command produces QR estimates for several values of q
simultaneously, allowing for differences between QR coefficients for
different quantiles to be tested. Bootstrap standard errors are
produced.
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Illustration

Illustration

We illustrate using data from the Medical Expenditure Panel Survey
(MEPS), modeling the log of total medical expenditure for Medicare
(elderly) patients. Explanatory variables include an indicator for
supplementary private insurance, a health status variable and three
demographic measures: age, female, and white.

. use mus03data, clear

. drop if mi(ltotexp)
(109 observations deleted)

. su ltotexp suppins totchr age female white, sep(0)

Variable Obs Mean Std. Dev. Min Max

ltotexp 2955 8.059866 1.367592 1.098612 11.74094
suppins 2955 .5915398 .4916322 0 1
totchr 2955 1.808799 1.294613 0 7

age 2955 74.24535 6.375975 65 90
female 2955 .5840948 .4929608 0 1
white 2955 .9736041 .1603368 0 1
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Illustration

Using Nick Cox’s qplot command (Stata J.), we illustrate the
empirical CDF of log total expenditures, which appears reasonably
symmetric. Note that the 10th, 50th and 90th quantiles are roughly 6,
8, and 10 on the log scale.

. qplot ltotexp, recast(line) ylab(,angle(0)) ///
> xlab(0(0.1)1) xline(0.5) xline(0.1) xline(0.9)
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Illustration
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Illustration

The median regression, with all covariates but female statistically
significant:

. qreg ltotexp suppins totchr age female white, nolog

Median regression Number of obs = 2955
Raw sum of deviations 3110.961 (about 8.111928)
Min sum of deviations 2796.983 Pseudo R2 = 0.1009

ltotexp Coef. Std. Err. t P>|t| [95% Conf. Interval]

suppins .2769771 .0535936 5.17 0.000 .1718924 .3820617
totchr .3942664 .0202472 19.47 0.000 .3545663 .4339664

age .0148666 .0041479 3.58 0.000 .0067335 .0229996
female -.0880967 .0532006 -1.66 0.098 -.1924109 .0162175
white .4987457 .1630984 3.06 0.002 .1789474 .818544
_cons 5.648891 .341166 16.56 0.000 4.979943 6.317838
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Illustration

Given the equivariance property of QR (which depends on the correct
specification of the conditional quantile function), we may calculate
marginal effects in terms of the underlying level variable:

. mat b = e(b)

. qui predict double xb

. qui gen double expxb = exp(xb)

. su expxb, mean

. mat b = r(mean) * b

. mat li b, ti("Marginal effects ($) on total medical expenditures")

b[1,6]: Marginal effects ($) on total medical expenditures
suppins totchr age female white _cons

y1 1037.755 1477.2049 55.700813 -330.07346 1868.6593 21164.8

Implying, for instance, that expenditures increase by $55.70 per year,
cet. par., and that one more chronic condition (as captured by totchr)
increases expenditures by $1,477.20, cet. par.
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Illustration

We may also compare OLS and QR estimates of this model at different
quantiles:

. eststo clear

. eststo, ti("OLS"): qui reg ltotexp suppins totchr age female white, robust
(est1 stored)

. foreach q in 0.10 0.25 0.50 0.75 0.90 {
2. eststo, ti("Q(`q´)"): qui qreg ltotexp suppins totchr age female w

> hite, q(`q´) nolog
3. }

(est2 stored)
(est3 stored)
(est4 stored)
(est5 stored)
(est6 stored)

. esttab using 82303ht.tex, replace nonum nodep mti drop(_cons) ///
> ti("Models of log total medical expenditure via OLS and QR")
(output written to 82303ht.tex)
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Illustration

Table : Models of log total medical expenditure via OLS and QR

OLS Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90)
suppins 0.257∗∗∗ 0.396∗∗∗ 0.386∗∗∗ 0.277∗∗∗ 0.149∗ -0.0143

(5.44) (4.90) (6.64) (5.17) (2.44) (-0.16)

totchr 0.445∗∗∗ 0.539∗∗∗ 0.459∗∗∗ 0.394∗∗∗ 0.374∗∗∗ 0.358∗∗∗
(25.56) (17.67) (20.93) (19.47) (16.18) (10.36)

age 0.0127∗∗∗ 0.0193∗∗ 0.0155∗∗∗ 0.0149∗∗∗ 0.0183∗∗∗ 0.00592
(3.52) (3.08) (3.45) (3.58) (3.86) (0.84)

female -0.0765 -0.0127 -0.0161 -0.0881 -0.122∗ -0.158
(-1.65) (-0.16) (-0.28) (-1.66) (-2.01) (-1.74)

white 0.318∗ 0.0734 0.338 0.499∗∗ 0.193 0.305
(2.34) (0.30) (1.91) (3.06) (1.04) (1.10)

N 2955 2955 2955 2955 2955 2955
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Illustration

We see that the effect of supplementary insurance differs considerably,
having a strong effect on expenditures at lower quantiles. The median
estimate is similar to the OLS point estimate. For the health status
variable, the effects are much stronger at lower quantiles, with the OLS
effect quite far from the median estimate.

We can also formally test the equivalence of the quantile estimates
across quantiles with bsqreg, which allows us to estimate the model
for each of several quantiles in a single model, allowing for
cross-equation hypothesis tests.
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Illustration

. qui sqreg ltotexp suppins totchr age female white, nolog q(0.1 0.25 0.5 0.75
> 0.9)

. test [q25=q50=q75]: suppins

( 1) [q25]suppins - [q50]suppins = 0
( 2) [q25]suppins - [q75]suppins = 0

F( 2, 2949) = 7.41
Prob > F = 0.0006

. test [q25=q50=q75]: totchr

( 1) [q25]totchr - [q50]totchr = 0
( 2) [q25]totchr - [q75]totchr = 0

F( 2, 2949) = 5.10
Prob > F = 0.0061

The estimates clearly reject equality of the estimated coefficients for
the three quartiles in each case.
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Illustration

Using Azevedo’s routine grqreg, available from SSC, we can view
how each covariate’s effects vary across quantiles, and contrast them
with the (fixed) OLS estimates:
. qreg ltotexp suppins totchr age female white, q(.50) nolog

Median regression Number of obs = 2955
Raw sum of deviations 3110.961 (about 8.111928)
Min sum of deviations 2796.983 Pseudo R2 = 0.1009

ltotexp Coef. Std. Err. t P>|t| [95% Conf. Interval]

suppins .2769771 .0535936 5.17 0.000 .1718924 .3820617
totchr .3942664 .0202472 19.47 0.000 .3545663 .4339664

age .0148666 .0041479 3.58 0.000 .0067335 .0229996
female -.0880967 .0532006 -1.66 0.098 -.1924109 .0162175
white .4987457 .1630984 3.06 0.002 .1789474 .818544
_cons 5.648891 .341166 16.56 0.000 4.979943 6.317838

. grqreg, cons ci ols olsci reps(40)
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Illustration
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Illustration

The graph illustrates how the effects of private insurance and health
status (number of chronic problems) vary over quantiles, and how the
magnitude of the effects at various quantiles differ considerably from
the OLS coefficient, even in terms of the confidence intervals around
each coefficient.

Although quantile regression methods are usually applied to
continuous-response data, it is possible to utilize them in the context of
count data, such as would appear in a Poisson or negative binomial
model. The qcount routine of Miranda, available from SSC,
implements quantile count regression.
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