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ARIMA and ARMAX models

ARIMA and ARMAX models

The pure ARIMA model is an atheoretic linear univariate time series
model which expresses that series in terms of three sets of
parameters:

A(L)(1− L)dyt = α + B(L)εt

The first set of p parameters define the autoregressive polynomial in
the lag operator L:

A(L) = 1− ρ1L− ρ2L2 − · · · − ρpLp

The second set of q parameters define the moving average polynomial
in the i .i .d . disturbance process:

B(L) = 1 + θ1L + θ2L2 + · · ·+ θqLq
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ARIMA and ARMAX models

The third parameter, d above, expresses the integer order of
differencing to be applied to the series before estimation to render it
stationary. Thus, we speak of an ARIMA(p,d ,q) model, with p + q
parameters to be estimated.

In order to be estimable, the d-differenced time series must be
stationary, so that the AR polynomial in the lag operator may be
inverted. Let y∗ be the differenced time series:

y∗t = A(L)−1 (α + B(L)εt )

where the stability condition requires that the characteristic roots of the
A(L) polynomial lie strictly outside the unit circle. For an AR(1), that
requires that |ρ| < 1. If the stability condition is satisfied, then an
ARMA(p,q) model will have a MA(∞) representation.
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ARIMA and ARMAX models

We have presented the model to be a univariate autoregression with a
moving-average disturbance process. However, it can also be cast in
terms of an autoregression in the disturbances. For instance, the
ARIMA(1,0,1) can be written as

yt = α + ρyt−1 + θεt−1 + εt

which is equivalent to the structural equation and ARMA(1,1)
disturbance process:

yt = γ + µt

µt = ρµt−1 + θεt−1 + εt
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ARIMA and ARMAX models

This latter specification is more general, in that we can write the
structural equation, replacing γ with Xβ, which defines a linear
regression model with ARMA(p,q) errors. This framework is
sometimes termed ARMA-X or ARMAX, and generalizes the model
often applied to regression with AR(1) errors (e.g., prais in Stata).

Estimation of ARIMA models is performed by maximum likelihood
using the Kalman filter, as any model containing a moving average
component requires nonlinear estimation techniques. Convergence
can be problematic for models with a large q.

The default VCE for ARIMA estimates is the outer product of gradients
(OPG) estimator devised by Berndt, Hall, Hall and Hausman (BHHH),
which has been shown to be more numerically stable for recursive
computations such as the Kalman filter.
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ARIMA and ARMAX models

Once a time series has been rendered stationary by differencing, the
choice of p and q may be made by examining two time-domain
constructs: the autocorrelation function (ACF) and the partial
autcorrelation function (PACF).

Use of these functions requires that the estimated model is both
stationary and invertible: that is, that the model may be transformed by
premultiplying by the inverse of the B(L) polynomial, rendering it as a
AR(∞). For that representation to exist, the characteristic roots of the
B(L) polynomial must lie outside the unit circle. In a MA(1), this
condition requires that |θ| < 1.

The principle of parsimony recommends that a model with fewer
parameters is to be preferred, and information criteria such as the AIC
and BIC penalize less parsimonious specifications.
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ARIMA and ARMAX models

Following estimation of an ARIMA(p,d,q) model, you should check to
see that residuals are serially uncorrelated, via their own ACF and
PACF and the Ljung–Box–Pierce Q statistic (wntestq). It may also be
useful to fit the model over a subset of the available data and examine
how well it performs on the full data set.

As the object of ARIMA modeling is often forecasting, you may want to
apply a forecast accuracy criterion to compare the quality of forecasts
of competing models. Diebold and Mariano (JBES, 1995) developed a
test for that purpose, relaxing some of the assumptions of the earlier
Granger–Newbold (JRSS-B, 1976) test. That routine is available from
SSC as dmariano. It allows you to compare two ex post forecasts in
terms of mean squared error, mean absolute error, and mean absolute
prediction error.
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ARIMA and ARMAX models

Stata’s capabilities to estimate ARIMA or ‘Box–Jenkins’ models are
implemented by the arima command. These modeling tools include
both the traditional ARIMA(p,d ,q) framework as well as multiplicative
seasonal ARIMA components for a univariate time series model. The
arima command also implements ARMAX models: that is, regression
equations with ARMA errors.

In both the ARIMA and ARMAX contexts, the arima command
implements dynamic forecasts, where successive forecasts are based
on their own predecessors, rather than being one-step-ahead (static)
forecasts.
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ARIMA and ARMAX models

To illustrate, we fit an ARIMA(p,d,q) model to the US consumer price
index (CPI):

. use usmacro1

. arima cpi, arima(1, 1, 1) nolog

ARIMA regression

Sample: 1959q2 - 2010q3 Number of obs = 206
Wald chi2(2) = 12657.64

Log likelihood = -105.364 Prob > chi2 = 0.0000

OPG
D.cpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

cpi
_cons .4711825 .0508081 9.27 0.000 .3716004 .5707646

ARMA
ar
L1. -.3478959 .0590356 -5.89 0.000 -.4636036 -.2321882

ma
L1. .9775208 .0123013 79.46 0.000 .9534106 1.001631

/sigma .4011922 .008254 48.61 0.000 .3850146 .4173697

. estimates store e42a

Christopher F Baum (BC / DIW) ARIMA and ARFIMA models Boston College, Spring 2015 9 / 61



ARIMA and ARMAX models

In this example, we use the arima(p, d, q) option to specify the
model. The ar( ) and ma( ) options may also be used separately, in
which case a numlist of lags to be included is specified. Differencing is
then applied to the dependent variable using the D. operator. For
example:

. use usmacro1

. arima D.cpi, ar(1 4) nolog

ARIMA regression

Sample: 1959q2 - 2010q3 Number of obs = 206
Wald chi2(2) = 105.12

Log likelihood = -112.7938 Prob > chi2 = 0.0000

OPG
D.cpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

cpi
_cons .4578741 .1086742 4.21 0.000 .2448766 .6708716

ARMA
ar
L1. .3035501 .0686132 4.42 0.000 .1690707 .4380295
L4. .3342019 .0407126 8.21 0.000 .2544068 .413997

/sigma .4177019 .0071104 58.75 0.000 .4037658 .4316381
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ARIMA and ARMAX models Forecasts from ARIMA models

Several prediction options are available after estimating an arima
model. The default option, xb, predicts the actual dependent variable:
so if D.cpi is the dependent variable, predictions are made for that
variable. In contrast, the y option generates predictions of the original
variable, in this case cpi.

The mse option calculates the mean squared error of predictions, while
yresiduals are computed in terms of the original variable.
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ARIMA and ARMAX models Forecasts from ARIMA models

We recall the estimates from the first model fitted, and calculate
predictions for the actual dependent variable, ∆CPI:

. estimates restore e42a
(results e42a are active now)

. predict double dcpihat, xb

. tsline dcpihat, ///
> ti("ARIMA(1,1,1) model of {&Delta}US CPI") scheme(s2mono)
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ARIMA and ARMAX models Forecasts from ARIMA models
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ARIMA and ARMAX models Forecasts from ARIMA models

We can see that the predictions are becoming increasingly volatile in
recent years.

We may also compute predicted values and residuals for the level of
CPI:

. estimates restore e42a
(results e42a are active now)

. predict double cpihat, y
(1 missing value generated)

. predict double cpieps, yresiduals
(1 missing value generated)

. tw (tsline cpieps, yaxis(2)) (tsline cpihat), ///
> ti("ARIMA(1,1,1) model of US CPI") scheme(s2mono)
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ARIMA and ARMAX models Forecasts from ARIMA models
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ARIMA and ARMAX models ARMAX estimation and dynamic forecasts

We now illustrate the estimation of an ARMAX model of ∆cpi as a
function of ∆oilprice with ARMA(1,1) errors. The estimation sample
runs through 2008q4.

. arima d.cpi d.oilprice if tin(, 2008q4), ar(1) ma(1) nolog

ARIMA regression

Sample: 1959q2 - 2008q4 Number of obs = 199
Wald chi2(3) = 1829.64

Log likelihood = -27.08681 Prob > chi2 = 0.0000

OPG
D.cpi Coef. Std. Err. z P>|z| [95% Conf. Interval]

cpi
oilprice

D1. .0602003 .0021528 27.96 0.000 .0559808 .0644198

_cons .4397912 .1833278 2.40 0.016 .0804753 .7991071

ARMA
ar
L1. .9732011 .0296099 32.87 0.000 .9151667 1.031235

ma
L1. -.7867952 .0535747 -14.69 0.000 -.8917997 -.6817906

/sigma .2765534 .0091383 30.26 0.000 .2586426 .2944642
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ARIMA and ARMAX models ARMAX estimation and dynamic forecasts

We compute static (one-period-ahead) ex ante forecasts and dynamic
(multi-period-ahead) ex ante forecasts for 2009q1–2010q3. In
specifying the dynamic forecast, the dynamic( ) option indicates the
period in which references to y should first evaluate to the prediction of
the model rather than historical values. In all prior periods, references
to y are to the actual data.

. predict double cpihat_s if tin(2006q1,), y
(188 missing values generated)

. label var cpihat_s "static forecast"

. predict double cpihat_d if tin(2006q1,), dynamic(tq(2008q4)) y
(188 missing values generated)

. label var cpihat_d "dynamic forecast"

. tw (tsline cpihat_s cpihat_d if !mi(cpihat_s)) ///
> (scatter cpi yq if !mi(cpihat_s), c(i)), scheme(s2mono) ///
> ti("Static and dynamic ex ante forecasts of US CPI") ///
> t2("Forecast horizon: 2009q1-2010q3") legend(rows(1))
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ARIMA and ARMAX models ARMAX estimation and dynamic forecasts
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ARFIMA models

ARFIMA models

In estimating an ARIMA model, the researcher chooses the integer
order of differencing d to ensure that the resulting series (1− L)dyt is a
stationary process.

As unit root tests often lack the power to distinguish between a truly
nonstationary (I(1)) series and a stationary series embodying a
structural break or shift, time series are often first-differenced if they do
not receive a clean bill of health from unit root testing.

Many time series exhibit too much long-range dependence to be
classified as I(0) but are not I(1). The ARFIMA model is designed to
represent these series.
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ARFIMA models

This problem is exacerbated by reliance on Dickey–Fuller style tests,
including the improved Elliott–Rothenberg–Stock (Econometrica, 1996,
dfgls) test, which have I(1) as the null hypothesis and I(0) as the
alternative. For that reason, it is a good idea to also employ a test with
the alternative null hypothesis of stationarity (I(0)) such as the
Kwiatkowski–Phillips–Schmidt–Shin (J. Econometrics, 1992, kpss)
test to see if its verdict agrees with that of the Dickey–Fuller style test.

The KPSS test, with a null hypothesis of I(0), is also useful in the
context of the ARFIMA model we now consider. This model allows for
the series to be fractionally integrated, generalizing the ARIMA model’s
integer order of integration to allow the d parameter to take on
fractional values, −0.5 < d < 0.5.
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ARFIMA models

The concept of fractional integration is often referred to as defining a
time series with long-range dependence, or long memory. Any pure
ARIMA stationary time series can be considered a short memory
series. An AR(p) model has infinite memory, as all past values of εt
are embedded in yt , but the effect of past values of the disturbance
process follows a geometric lag, damping off to near-zero values
quickly. A MA(q) model has a memory of exactly q periods, so that the
effect of the moving average component quickly dies off.
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ARFIMA models The ARFIMA model

The ARFIMA model1

The model of an autoregressive fractionally integrated moving average
process of a timeseries of order (p, d , q), denoted by ARFIMA
(p, d , q), with mean µ, may be written using operator notation as

Φ(L)(1− L)d (yt − µ) = Θ(L)εt , εt ∼ i .i .d .(0, σ2
ε )

where L is the backward-shift operator, Φ(L) = 1 - φ1L - .. - φpLp, Θ(L)
= 1 + ϑ1L + ... + ϑqLq, and (1− L)d is the fractional differencing
operator defined by

(1− L)d =
∞∑

k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)

with Γ(·) denoting the gamma (generalized factorial) function. The
parameter d is allowed to assume any real value.

1See Baum and Wiggins (Stata Tech.Bull., 2000).
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ARFIMA models The ARFIMA model

The arbitrary restriction of d to integer values gives rise to the standard
autoregressive integrated moving average (ARIMA) model. The
stochastic process yt is both stationary and invertible if all roots of Φ(L)
and Θ(L) lie outside the unit circle and |d | < 0.5. The process is
nonstationary for d ≥ 0.5, as it possesses infinite variance; see
Granger and Joyeux (JTSA, 1980).
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ARFIMA models The ARFIMA model

Assuming that d ∈ [0, 0.5), Hosking (Biometrika, 1981) showed that
the autocorrelation function, ρ(·), of an ARFIMA process is
proportional to k2d−1 as k →∞. Consequently, the autocorrelations of
the ARFIMA process decay hyperbolically to zero as k →∞ in
contrast to the faster, geometric decay of a stationary ARMA process.

For d ∈ (0,0.5),
∑n

j=−n |ρ(j)| diverges as n→∞, and the ARFIMA
process is said to exhibit long memory, or long-range positive
dependence. The process is said to exhibit intermediate memory
(anti-persistence), or long-range negative dependence, for
d ∈ (−0.5,0).
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ARFIMA models The ARFIMA model

The process exhibits short memory for d = 0, corresponding to
stationary and invertible ARMA modeling. For d ∈ [0.5, 1) the process
is mean reverting, even though it is not covariance stationary, as there
is no long-run impact of an innovation on future values of the process.

If a series exhibits long memory, it is neither stationary (I(0)) nor is it a
unit root (I(1)) process; it is an I(d) process, with d a real number.

A series exhibiting long memory, or persistence, has an autocorrelation
function that damps hyperbolically, more slowly than the geometric
damping exhibited by “short memory” (ARMA) processes. Thus, it may
be predictable at long horizons. An excellent survey of long memory
models—which originated in hydrology, and have been widely applied
in economics and finance–is given by Baillie (J. Econometrics, 1996).
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ARFIMA models Approaches to estimation of the ARFIMA model

Approaches to estimation of the ARFIMA model

There are two approaches to the estimation of an ARFIMA (p, d , q)
model: exact maximum likelihood estimation, as proposed by Sowell
(1992), and semiparametric approaches. Sowell’s approach requires
specification of the p and q values, and estimation of the full ARFIMA
model conditional on those choices. This involves the challenge of
choosing an appropriate ARMA specification.

We first describe semiparametric methods, in which we assume that
the “short memory” or ARMA components of the timeseries are
relatively unimportant, so that the long memory parameter d may be
estimated without fully specifying the data generating process.
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ARFIMA models Semiparametric estimators for I(d) series

The Lo Modified Rescaled Range estimator2

The Stata routine lomodrs performs Lo’s (Econometrica, 1991)
modified rescaled range (R/S, “range over standard deviation”) test for
long range dependence of a time series. The classical R/S statistic,
devised by Hurst (1951) and Mandelbrot (AESM, 1972), is the range of
the partial sums of deviations of a timeseries from its mean, rescaled
by its standard deviation. For a sample of n values {x1, x2, . . . xn},

Qn =
1
sn

Max1≤k≤n

k∑
j=1

(
xj − x̄n

)
−Min1≤k≤n

k∑
j=1

(
xj − x̄n

)
where sn is the maximum likelihood estimator of the standard deviation
of x .

2See Baum and Röom (Stata Tech. Bull., 2001).
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ARFIMA models Semiparametric estimators for I(d) series

The first bracketed term is the maximum of the partial sums of the first
k deviations of xj from the full-sample mean, which is nonnegative.
The second bracketed term is the corresponding minimum, which is
nonpositive. The difference of these two quantities is thus nonnegative,
so that Qn > 0. Empirical studies have demonstrated that the R/S
statistic has the ability to detect long-range dependence in the data.
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ARFIMA models Semiparametric estimators for I(d) series

Like many other estimators of long-range dependence, though, the
R/S statistic has been shown to be excessively sensitive to
“short-range dependence,” or short memory, features of the data. Lo
(1991) shows that a sizable AR(1) component in the data generating
process will seriously bias the R/S statistic. He modifies the R/S
statistic to account for the effect of short-range dependence by
applying a “Newey–West” correction (using a Bartlett window) to derive
a consistent estimate of the long-range variance of the timeseries.
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ARFIMA models Semiparametric estimators for I(d) series

For maxlag> 0, the denominator of the statistic is computed as the
Newey–West estimate of the long run variance of the series. If
maxlag is set to zero, the test performed is the classical
Hurst–Mandelbrot rescaled-range statistic. Critical values for the test
are taken from Lo, 1991, Table II.

Inference from the modified R/S test for long range dependence is
complementary to that derived from that of other tests for long
memory, or fractional integration in a timeseries, such as kpss,
gphudak, modlpr and roblpr.
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ARFIMA models Semiparametric estimators for I(d) series

The Geweke–Porter-Hudak log periodogram
regression (LPR) estimator

The Stata command gphudak (Baum and Wiggins, Stata Tech. Bull.,
2000) performs the Geweke and Porter-Hudak (JTSA, 1983)
semiparametric log periodogram regression, often described as the
“GPH test,” for long memory (fractional integration) in a timeseries.

The GPH method uses nonparametric methods—a spectral regression
estimator—to evaluate d without explicit specification of the “short
memory” (ARMA) parameters of the series. The series is usually
differenced so that the resulting d estimate will fall in the [-0.5, 0.5]
interval.
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ARFIMA models Semiparametric estimators for I(d) series

Geweke and Porter-Hudak (1983) proposed a semiparametric
procedure to obtain an estimate of the memory parameter d of a
fractionally integrated process Xt in a model of the form

(1− L)d Xt = εt ,

where εt is stationary with zero mean and continuous spectral density
fε (λ) > 0.
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ARFIMA models Semiparametric estimators for I(d) series

The estimate d̂ is obtained from the application of ordinary least
squares to

log (Ix (λs)) = ĉ − d̂ log
∣∣∣1− eiλs

∣∣∣2 + residual

computed over the fundamental frequencies{
λs = 2πs

n , s = 1, ...,m,m < n
}

. We define ωx (λs) = 1√
2πn

∑n
t=1 Xteitλs

as the discrete Fourier transform (dft) of the timeseries Xt ,
Ix (λs) = ωx (λs)ωx (λs)∗ as the periodogram, and xs = log

∣∣1− eiλs
∣∣ .

Ordinary least squares on (7) yields

d̂ = 0.5
∑m

s=1 xs log Ix (λs)∑m
s=1 x2

s
.
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ARFIMA models Semiparametric estimators for I(d) series

Various authors have proposed methods for the choice of m, the
number of Fourier frequencies included in the regression. The
regression slope estimate is an estimate of the slope of the series’
power spectrum in the vicinity of the zero frequency; if too few
ordinates are included, the slope is calculated from a small sample. If
too many are included, medium and high-frequency components of the
spectrum will contaminate the estimate. A choice of

√
T , or power =

0.5 is often employed.

To evaluate the robustness of the GPH estimate, a range of power
values (from 0.40–0.75) is commonly calculated as well. Two
estimates of the d coefficient’s standard error are commonly
employed: the regression standard error, giving rise to a standard
t-test, and an asymptotic standard error, based upon the theoretical
variance of the log periodogram of π

2

6 . The statistic based upon that
standard error has a standard normal distribution under the null.

Christopher F Baum (BC / DIW) ARIMA and ARFIMA models Boston College, Spring 2015 34 / 61



ARFIMA models Semiparametric estimators for I(d) series

The Phillips Modified GPH log periodogram
regression estimator

The Stata routine modlpr (Baum and Wiggins, Stata Tech. Bull.,
2000) computes a modified form of the GPH estimate of the long
memory parameter, d , of a timeseries, proposed by Phillips (Cowles,
1999a, 1999b). Phillips (1999a) points out that the prior literature on
this semiparametric approach does not address the case of d = 1, or a
unit root, in (6), despite the broad interest in determining whether a
series exhibits unit-root behavior or long memory behavior, and his
work showing that the d̂ estimate of (7) is inconsistent when d > 1,
with d̂ exhibiting asymptotic bias toward unity.
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ARFIMA models Semiparametric estimators for I(d) series

This weakness of the GPH estimator is solved by Phillips’ Modified Log
Periodogram Regression estimator, in which the dependent variable is
modified to reflect the distribution of d under the null hypothesis that
d = 1. The estimator gives rise to a test statistic for d = 1 which is a
standard normal variate under the null.

Phillips suggests that deterministic trends should be removed from the
series before application of the estimator. Accordingly, the routine will
automatically remove a linear trend from the series. This may be
suppressed with the notrend option. The comments above regarding
power apply equally to modlpr.
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ARFIMA models Semiparametric estimators for I(d) series

Phillips’ (1999b) modification of the GPH estimator is based on an
exact representation of the dft in the unit root case. The modification
expresses

ωx (λs) =
ωu (λs)

1− eiλs
− eiλs

1− eiλs

Xn√
2πn

and the modified dft as

υx (λs) = ωx (λs) +
eiλs

1− eiλs

Xn√
2πn

with associated periodogram ordinates Iv (λs) = υx (λs) υx (λs)∗

(1999b, p.9). He notes that both υx (λs) and, thus, Iv (λs) are
observable functions of the data.
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ARFIMA models Semiparametric estimators for I(d) series

The log-periodogram regression is now the regression of log Iv (λs) on
as = log

∣∣1− eiλs
∣∣ . Defining ā = m−1∑m

s=1 as and xs = as − ā, the
modified estimate of the long-memory parameter becomes

d̃ = 0.5
∑m

s=1 xs log Iν (λs)∑m
s=1 x2

s
.
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ARFIMA models Semiparametric estimators for I(d) series

Phillips proves that, with appropriate assumptions on the distribution of
εt , the distribution of d̃ follows

√
m
(

d̃ − d
)
→d N

(
0,
π2

24

)
,

so that d̃ has the same limiting distribution at d = 1 as does the GPH
estimator in the stationary case so that d̃ is consistent for values of d
around unity. A semiparametric test statistic for a unit root against a
fractional alternative is then based upon the statistic (1999a, p.10):

zd =

√
m
(

d̃ − 1
)

π/
√

24

with critical values from the standard normal distribution. This test is
consistent against both d < 1 and d > 1 fractional alternatives.
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ARFIMA models Semiparametric estimators for I(d) series

Robinson’s Log Periodogram Regression
estimator

The Stata routine roblpr (Baum and Wiggins, Stata Tech. Bull.,
2000) computes the Robinson (Ann. Stat.,1995) multivariate
semiparametric estimate of the long memory (fractional integration)
parameters, d(g), of a set of G timeseries, y(g), g = 1,G with G ≥ 1.
When applied to a set of timeseries, the d(g) parameter for each
series is estimated from a single log-periodogram regression which
allows the intercept and slope to differ for each series.
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ARFIMA models Semiparametric estimators for I(d) series

One of the innovations of Robinson’s estimator is that it is not
restricted to using a small fraction of the ordinates of the empirical
periodogram of the series: that is, the reasonable values of power
need not exclude a sizable fraction of the original sample size. The
estimator also allows for the removal of one or more initial ordinates,
and for the averaging of the periodogram over adjacent frequencies.
The rationales for using non-default values of either of these options
are presented in Robinson (1995).
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ARFIMA models Semiparametric estimators for I(d) series

Robinson (1995) proposes an alternative log-periodogram regression
estimator which he claims provides “modestly superior asymptotic
efficiency to d̄ (0)” (d̄ (0) being the Geweke and Porter-Hudak
estimator) (1995, p.1052).

Importantly, Robinson’s formulation of the log-periodogram regression
also allows for the formulation of a multivariate model, providing
justification for tests that different time series share a common
differencing parameter. Normality of the underlying time series is
assumed, but Robinson claims that other conditions underlying his
derivation are milder than those conjectured by GPH.
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ARFIMA models Semiparametric estimators for I(d) series

We present here Robinson’s multivariate formulation, which applies to
a single time series as well. Let Xt represent a G−dimensional vector
with gth element Xgt ,g = 1, ...,G. Assume that Xt has a spectral
density matrix

∫ π
−π eijλf (λ) dλ, with (g,h) element denoted as fgh (λ) .

The gth diagonal element, fgg (λ) , is the power spectral density of Xgt .
For 0 < Cg <∞ and −1

2 < dg <
1
2 , assume that fgg (λ) ∼ Cgλ

−2dg as
λ→ 0+ for g = 1, ...,G. The periodogram of Xgt is then denoted as

Ig (λ) = (2πn)−1

∣∣∣∣∣
n∑

t=1

Xgteitλ

∣∣∣∣∣
2

,g = 1, ...G
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ARFIMA models Semiparametric estimators for I(d) series

Without averaging the periodogram over adjacent frequencies nor
omission of l initial frequencies from the regression, we may define
Ygk = log Ig (λk ) . The least squares estimates of c = (c1, ...cG)′ and
d = (d1, ...,dG)′ are given by[

c̃
d̃

]
= vec

{
Y ′Z

(
Z ′Z

)−1
}
,

where Z = (Z1, ...Zm)′ , Zk = (1,−2 logλk )′, Y = (Y1, ...YG) , and
Yg =

(
Yg,1, ...Yg,m

)′ for m periodogram ordinates.
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ARFIMA models Semiparametric estimators for I(d) series

Standard errors for d̃g and for a test of the restriction that two or more
of the dg are equal may be derived from the estimated covariance
matrix of the least squares coefficients. The standard errors for the
estimated parameters are derived from a pooled estimate of the
variance in the multivariate case, so that their interval estimates differ
from those of their univariate counterparts. Modifications to this
derivation when the frequency-averaging (j) or omission of initial
frequencies (l) options are selected may be found in Robinson (1995).
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ARFIMA models Semiparametric estimators for I(d) series

Maximum likelihood estimators of ARFIMA models

The official Stata command arfima implements the full maximum
likelihood estimation of the ARFIMA(p,d,q) model, as proposed by
Sowell (J. Econometrics, 1992). The ARFIMA model has the d
parameter to handle long-run dependence and ARMA parameters to
handle short-run dependence. Sowell has argued that using different
parameters for different types of dependence facilitates estimation and
interpretation.
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ARFIMA models Semiparametric estimators for I(d) series

The ARFIMA model specifies that

yt = (1− L)−d (Φ(L))−1 Θ(L)εt

After estimation, the short-run effects are obtained by setting d = 0,
and describe the behavior of the fractionally differenced process
(1− L)dyt . The long-run effects use the estimated value of d , and
describe the behavior of the fractionally integrated yt .

Granger and Joyeux (1980) motivate ARFIMA models by noting that
their implied spectral densities for d > 0 are finite except at frequency
0, whereas stationary ARMA models have finite spectral densities at
all frequencies. The ARFIMA model is able to capture the long-range
dependence, which cannot be expressed by stationary ARMA models.
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ARFIMA models Applications

lomodrs and classical rescaled range estimators

Data from Terence Mills’ Econometric Analysis of Financial Time
Series on returns from the annual S&P 500 index of stock prices,
1871-1997, are analyzed.

. use http://fmwww.bc.edu/ec-p/data/Mills2d/SP500A.DTA, clear

. lomodrs sp500ar

Lo Modified R/S test for sp500ar

Critical values for H0: sp500ar is not long-range dependent

90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]

Test statistic: .781 (1 lags via Andrews criterion) N = 124
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. lomodrs sp500ar, max(0)

Hurst-Mandelbrot Classical R/S test for sp500ar

Critical values for H0: sp500ar is not long-range dependent

90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]

Test statistic: .799 N = 124

. lomodrs sp500ar if tin(1946,)

Lo Modified R/S test for sp500ar

Critical values for H0: sp500ar is not long-range dependent

90%: [ 0.861, 1.747 ]
95%: [ 0.809, 1.862 ]
99%: [ 0.721, 2.098 ]

Test statistic: 1.29 (0 lags via Andrews criterion) N = 50
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ARFIMA models Applications

For the full sample, the null of stationarity may be rejected at 95%
using either the Lo modified R/S statistic or the classic
Hurst–Mandelbrot statistic. For the postwar data, the null may not be
rejected at any level of significance. Long-range dependence, if
present in this series, seems to be contributed by pre-World War II
behavior of the stock price series.
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ARFIMA models Applications

GPH, Phillips modlpr, Robinson roblpr

Data from Terence Mills’ Econometric Analysis of Financial Time
Series on UK FTA All Share stock returns (ftaret) and dividends (ftadiv)
are analyzed.

. use http://fmwww.bc.edu/ec-p/data/Mills2d/FTA.DTA, clear

. gphudak ftaret,power(0.5 0.6 0.7)

GPH estimate of fractional differencing parameter
------------------------------------------------------------------------------

Asy.
Power Ords Est d StdErr t(H0: d=0) P>|t| StdErr z(H0: d=0) P>|z|
------------------------------------------------------------------------------

.5 20 -.00204 .1603 -0.0127 0.990 .1875 -0.0109 0.991

.6 35 .228244 .1459 1.5645 0.128 .1302 1.7529 0.080

.7 64 .141861 .08992 1.5776 0.120 .09127 1.5544 0.120
------------------------------------------------------------------------------
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. modlpr ftaret, power(0.5 0.55:0.8)

Modified LPR estimate of fractional differencing parameter for ftaret
------------------------------------------------------------------------------
Power Ords Est d Std Err t(H0: d=0) P>|t| z(H0: d=1) P>|z|
------------------------------------------------------------------------------

.5 19 .0231191 .139872 0.1653 0.870 -6.6401 0.000
.55 25 .2519889 .1629533 1.5464 0.135 -5.8322 0.000
.6 34 .2450011 .1359888 1.8016 0.080 -6.8650 0.000
.65 46 .1024504 .1071614 0.9560 0.344 -9.4928 0.000
.7 63 .1601207 .0854082 1.8748 0.065 -10.3954 0.000
.75 84 .1749659 .08113 2.1566 0.034 -11.7915 0.000
.8 113 .0969439 .0676039 1.4340 0.154 -14.9696 0.000

------------------------------------------------------------------------------

. roblpr ftaret

Robinson estimates of fractional differencing parameter for ftaret
-------------------------------------------------------
Power Ords Est d Std Err t(H0: d=0) P>|t|
-------------------------------------------------------

.9 205 .1253645 .0446745 2.8062 0.005
-------------------------------------------------------
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. roblpr ftap ftadiv

Robinson estimates of fractional differencing parameters
Power = .9 Ords = 205
-------------------------------------------------------------
Variable | Est d Std Err t P>|t|
-----------------+-------------------------------------------
ftap | .8698092 .0163302 53.2640 0.000
ftadiv | .8717427 .0163302 53.3824 0.000
-------------------------------------------------------------
Test for equality of d coefficients: F(1,406) = .00701 Prob > F = 0.9333

. constraint define 1 ftap=ftadiv

. roblpr ftap ftadiv ftaret, c(1)

Robinson estimates of fractional differencing parameters
Power = .9 Ords = 205
-------------------------------------------------------------
Variable | Est d Std Err t P>|t|
-----------------+-------------------------------------------
ftap | .8707759 .0205143 42.4473 0.000
ftadiv | .8707759 .0205143 42.4473 0.000
ftaret | .1253645 .0290116 4.3212 0.000
-------------------------------------------------------------
Test for equality of d coefficients: F(1,610) = 440.11 Prob > F = 0.0000

Christopher F Baum (BC / DIW) ARIMA and ARFIMA models Boston College, Spring 2015 53 / 61



ARFIMA models Applications

The GPH test, applied to the stock returns series, generates estimates
of the long memory parameter that cannot reject the null at the ten
percent level using the t-test.

Phillips’ modified LPR, applied to this series, finds that d = 1 can be
rejected for all powers tested, while d = 0 (stationarity) may be
rejected at the ten percent level for powers 0.6, 0.7, and 0.75.
Robinson’s estimate for the returns series alone is quite precise.

Robinson’s multivariate test, applied to the price and dividends series,
finds that each series has d > 0. The test that they share the same d
cannot be rejected. Accordingly, the test is applied to all three series
subject to the constraint that price and dividends series have a
common d , yielding a more precise estimate of the difference in d
parameters between those series and the stock returns series.
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Sowell MLE ARFIMA

We model the log of the monthly level of CO above Mauna Loa,
Hawaii, removing seasonal effects by using the twelfth seasonal
difference (S12. in Stata parlance) of that series. We first consider an
ARMA model with a first lag in the AR polynomial and the second lag
in the MA polynomial.
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ARFIMA models Applications

. webuse mloa

. arima S12.log, ar(1) ma(2) vsquish nolog

ARIMA regression

Sample: 1960m1 - 1990m12 Number of obs = 372
Wald chi2(2) = 500.41

Log likelihood = 2001.564 Prob > chi2 = 0.0000

OPG
S12.log Coef. Std. Err. z P>|z| [95% Conf. Interval]

log
_cons .0036754 .0002475 14.85 0.000 .0031903 .0041605

ARMA
ar
L1. .7354346 .0357715 20.56 0.000 .6653237 .8055456
ma
L2. .1353086 .0513156 2.64 0.008 .0347319 .2358853

/sigma .0011129 .0000401 27.77 0.000 .0010344 .0011914

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.

. psdensity d_arma omega1
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All parameters are statistically significant, and indicate a high degree
of dependence. This model is nested within the ARFIMA model:

. arfima S12.log, ar(1) ma(2) vsquish nolog

ARFIMA regression

Sample: 1960m1 - 1990m12 Number of obs = 372
Wald chi2(3) = 248.87

Log likelihood = 2006.0805 Prob > chi2 = 0.0000

OIM
S12.log Coef. Std. Err. z P>|z| [95% Conf. Interval]

S12.log
_cons .003616 .0012968 2.79 0.005 .0010743 .0061578

ARFIMA
ar
L1. .2160894 .1015596 2.13 0.033 .0170362 .4151426
ma
L2. .1633916 .051691 3.16 0.002 .062079 .2647041
d .4042573 .080546 5.02 0.000 .2463899 .5621246

/sigma2 1.20e-06 8.84e-08 13.63 0.000 1.03e-06 1.38e-06

Note: The test of the variance against zero is one sided, and the two-sided
confidence interval is truncated at zero.
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Here, too, all parameters are significant at the five percent level. The
estimate of d , 0.404, is far from zero, indicating the presence of
long-range dependence. We can compare the models’ ability to
capture the dynamics of the series by computing their implied spectral
densities over (0, π).

For a stationary time series, the spectral density describes the relative
importance of components at different frequencies. The integral of the
spectral density over (−π, π) is the variance of the time series.

We can also compute the implied spectral density of the ARFIMA
model, setting d to zero to compute the short-run estimates. The
long-run estimates have infinite density at frequency zero.
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ARFIMA models Applications

All parameters are statistically significant, and indicate a high degree
of dependence. This model is nested within the ARFIMA model:

. psdensity d_arfima omega2

. psdensity ds_arfima omega3, smemory

. line d_arma d_arfima omega1, name(lmem) scheme(s2mono) nodraw ylab(,angle(0))

. line d_arma ds_arfima omega1, name(smem) scheme(s2mono) nodraw ylab(,angle(0)
> )

. graph combine lmem smem, cols(1) xcommon ///
> ti("ARMA and ARFIMA implied spectral densities")

. gr export 82308b.pdf, replace
(file /Users/cfbaum/Dropbox/baum/EC823 S2013/82308b.pdf written in PDF format)
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The two models imply different spectral densities for frequencies close
to zero when d > 0. The spectral density of the ARMA model remains
finite, but is pulled upward by the model’s attempt to capture
long-range dependence. The short-run ARFIMA parameters can
capture both low-frequency and high-frequency components in the
spectral density.

In contrast, the ARMA model confounds the long-run and short-run
effects. The added flexibility of the ARFIMA model, with a separate
parameter to capture long-run dependence, is evident in these
estimates.

Although we have not illustrated it here, arfima may also fit
‘ARFIMA-X’ models with additional exogenous regressors.
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