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Vector autoregressive models

Vector autoregressive (VAR) models

A p-th order vector autoregression, or VAR(p), with exogenous
variables x can be written as:

yt = v + A1yt−1 + · · ·+ Apyt−p + B0xt + B1xt−1 + · · ·+ Bsxt−s + ut

where yt is a vector of K variables, each modeled as function of p lags
of those variables and, optionally, a set of exogenous variables xt .

We assume that E(ut ) = 0,E(utu′t ) = Σ and E(utu′s) = 0 ∀t 6= s.
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Vector autoregressive models

If the VAR is stable (see command varstable) we can rewrite the
VAR in moving average form as:

yt = µ+
∞∑

i=0

Dixt−i +
∞∑

i=0

Φiut−i

which is the vector moving average (VMA) representation of the VAR,
where all past values of yt have been substituted out. The Di matrices
are the dynamic multiplier functions, or transfer functions. The
sequence of moving average coefficients Φi are the simple
impulse-response functions (IRFs) at horizon i .
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Vector autoregressive models

Estimation of the parameters of the VAR requires that the variables in
yt and xt are covariance stationary, with their first two moments finite
and time-invariant. If the variables in yt are not covariance stationary,
but their first differences are, they may be modeled with a vector error
correction model, or VECM.

In the absence of exogenous variables, the disturbance
variance-covariance matrix Σ contains all relevant information about
contemporaneous correlation among the variables in yt . VARs may be
reduced-form VARs, which do not account for this contemporaneous
correlation. They may be recursive VARs, where the K variables are
assumed to form a recursive dynamic structural model where each
variable only depends upon those above it in the vector yt . Or, they
may be structural VARs, where theory is used to place restrictions on
the contemporaneous correlations.
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Vector autoregressive models

Stata has a complete suite of commands for fitting and forecasting
vector autoregressive (VAR) models and structural vector
autoregressive (SVAR) models. Its capabilities include estimating and
interpreting impulse response functions (IRFs), dynamic multipliers,
and forecast error vector decompositions (FEVDs).

Subsidiary commands allow you to check the stability condition of VAR
or SVAR estimates; to compute lag-order selection statistics for VARs;
to perform pairwise Granger causality tests for VAR estimates; and to
test for residual autocorrelation and normality in the disturbances of
VARs.

Dynamic forecasts may be computed and graphed after VAR or SVAR
estimation.
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Vector autoregressive models

Stata’s varbasic command allows you to fit a simple reduced-form
VAR without constraints and graph the impulse-response functions
(IRFs). The more general var command allows for constraints to be
placed on the coefficients.

The varsoc command allows you to select the appropriate lag order
for the VAR; command varwle computes Wald tests to determine
whether certain lags can be excluded; varlmar checks for
autocorrelation in the disturbances; and varstable checks whether
the stability conditions needed to compute IRFs and FEVDs are
satisfied.
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Vector autoregressive models IRFs, OIRFs and FEVDs

IRFs, OIRFs and FEVDs

Impulse response functions, or IRFs, measure the effects of a shock to
an endogenous variable on itself or on another endogenous variable.
Stata’s irf commands can compute five types of IRFs:
simple IRFs, orthogonalized IRFs, cumulative IRFs, cumulative
orthogonalized IRFs and structural IRFs. We defined the simple IRF
in an earlier slide.

The forecast error variance decomposition (FEVD) measures the
fraction of the forecast error variance of an endogenous variable that
can be attributed to orthogonalized shocks to itself or to another
endogenous variable.
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Vector autoregressive models IRFs, OIRFs and FEVDs

To analyze IRFs and FEVDs in Stata, you estimate a VAR model and
use irf create to estimate the IRFs and FEVDs and store them in a
file. This step is done automatically by the varbasic command, but
must be done explicitly after the var or svar commands. You may
then use irf graph, irf table or other irf analysis commands
to examine results.

For IRFs to be computed, the VAR must be stable. The simple IRFs
shown above have a drawback: they give the effect over time of a
one-time unit increase to one of the shocks, holding all else constant.
But to the extent the shocks are contemporaneously correlated, the
other shocks cannot be held constant, and the VMA form of the VAR
cannot have a causal interpretation.
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Vector autoregressive models Orthogonalized innovations

Orthogonalized innovations

We can overcome this difficulty by taking E(utu′t ) = Σ, the covariance
matrix of shocks, and finding a matrix P such that Σ = PP′ and
P−1ΣP′−1 = IK . The vector of shocks may then be orthogonalized by
P−1. For a pure VAR, without exogenous variables,

yt = µ+
∞∑

i=0

Φiut−i

= µ+
∞∑

i=0

ΦiPP−1ut−i

= µ+
∞∑

i=0

ΘiP−1ut−i

= µ+
∞∑

i=0

Θiwt−i
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Vector autoregressive models Orthogonalized innovations

Sims (Econometrica, 1980) suggests that P can be written as the
Cholesky decomposition of Σ−1, and IRFs based on this choice are
known as the orthogonalized IRFs. As a VAR can be considered to be
the reduced form of a dynamic structural equation (DSE) model,
choosing P is equivalent to imposing a recursive structure on the
corresponding DSE model. The ordering of the recursive structure is
that imposed in the Cholesky decomposition, which is that in which the
endogenous variables appear in the VAR estimation.
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Vector autoregressive models Orthogonalized innovations

As this choice is somewhat arbitrary, you may want to explore the
OIRFs resulting from a different ordering. It is not necessary, using
var and irf create, to reestimate the VAR with a different ordering,
as the order() option of irf create will apply the Cholesky
decomposition in the specified order.

Just as the OIRFs are sensitive to the ordering of variables, the FEVDs
are defined in terms of a particular causal ordering.

If there are additional (strictly) exogenous variables in the VAR, the
dynamic multiplier functions or transfer functions can be computed.
These measure the impact of a unit change in the exogenous variable
on the endogenous variables over time. They are generated by fcast
compute and graphed with fcast graph.
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Vector autoregressive models varbasic

varbasic

For a simple VAR estimation, you need only specify the varbasic
varlist command. The number of lags, which is given as a numlist,
defaults to (1 2). Note that you must list every lag to be included; for
instance lags(4) would only include the fourth lag, whereas
lags(1/4) would include the first four lags.

Using the usmacro1 dataset, let us estimate a basic VAR for the first
differences of log real investment, log real consumption and log real
income through 2005q4. By default, the command will produce a
graph of the orthogonalized IRFs (OIRFs) for 8 steps ahead. You may
choose a different horizon with the step( ) option.
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Vector autoregressive models varbasic

. use usmacro1

. varbasic D.lrgrossinv D.lrconsump D.lrgdp if tin(,2005q4)

Vector autoregression

Sample: 1959q4 - 2005q4 No. of obs = 185
Log likelihood = 1905.169 AIC = -20.3694
FPE = 2.86e-13 HQIC = -20.22125
Det(Sigma_ml) = 2.28e-13 SBIC = -20.00385

Equation Parms RMSE R-sq chi2 P>chi2

D_lrgrossinv 7 .017503 0.2030 47.12655 0.0000
D_lrconsump 7 .006579 0.0994 20.42492 0.0023
D_lrgdp 7 .007722 0.2157 50.88832 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

D_lrgrossinv
lrgrossinv

LD. .1948761 .0977977 1.99 0.046 .0031962 .3865561
L2D. .1271815 .0981167 1.30 0.195 -.0651237 .3194868

lrconsump
LD. .5667047 .2556723 2.22 0.027 .0655963 1.067813
L2D. .1771756 .2567412 0.69 0.490 -.326028 .6803791

lrgdp
LD. .1051089 .2399165 0.44 0.661 -.3651189 .5753367
L2D. -.1210883 .2349968 -0.52 0.606 -.5816736 .3394969

_cons -.0009508 .0027881 -0.34 0.733 -.0064153 .0045138

D_lrconsump
lrgrossinv

LD. .0106853 .0367601 0.29 0.771 -.0613631 .0827338
L2D. -.0448372 .03688 -1.22 0.224 -.1171207 .0274463

lrconsump
LD. -.0328597 .0961018 -0.34 0.732 -.2212158 .1554964
L2D. .1113313 .0965036 1.15 0.249 -.0778123 .300475

lrgdp
LD. .1887531 .0901796 2.09 0.036 .0120043 .3655018
L2D. .1113505 .0883304 1.26 0.207 -.0617738 .2844748

_cons .0058867 .001048 5.62 0.000 .0038326 .0079407

D_lrgdp
lrgrossinv

LD. .1239506 .0431482 2.87 0.004 .0393818 .2085195
L2D. .043157 .0432889 1.00 0.319 -.0416878 .1280017

lrconsump
LD. .4077815 .1128022 3.62 0.000 .1866933 .6288696
L2D. .2374275 .1132738 2.10 0.036 .0154149 .45944

lrgdp
LD. -.2095935 .1058508 -1.98 0.048 -.4170572 -.0021298
L2D. -.1141997 .1036802 -1.10 0.271 -.3174091 .0890097

_cons .0038423 .0012301 3.12 0.002 .0014314 .0062533
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Vector autoregressive models varbasic
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Vector autoregressive models varbasic

As any of the VAR estimation commands save the estimated IRFs,
OIRFs and FEVDs in an .irf file, you may examine the FEVDs with a
graph command. These items may also be tabulated with the irf
table and irf ctable commands. The latter command allows you
to juxtapose tabulated values, such as the OIRF and FEVD for a
particular pair of variables, while the irf cgraph command allows
you to do the same for graphs.

. irf graph fevd, lstep(1)
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Vector autoregressive models varbasic
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Vector autoregressive models varbasic

After producing any graph in Stata, you may save it in Stata’s internal
format using graph save filename. This will create a .gph file which
may be accessed with graph use. The file contains all the
information necessary to replicate the graph and modify its
appearance. However, only Stata can read .gph files. If you want to
reproduce the graph in a document, use the graph export
filename.format command, where format is .eps or .pdf.
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Vector autoregressive models varbasic

We now consider a model fit with var to the same three variables,
adding the change in the log of the real money base as an exogenous
variable. We include four lags in the VAR.
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Vector autoregressive models varbasic

. var D.lrgrossinv D.lrconsump D.lrgdp if tin(,2005q4), ///
> lags(1/4) exog(D.lrmbase)

Vector autoregression

Sample: 1960q2 - 2005q4 No. of obs = 183
Log likelihood = 1907.061 AIC = -20.38318
FPE = 2.82e-13 HQIC = -20.0846
Det(Sigma_ml) = 1.78e-13 SBIC = -19.64658

Equation Parms RMSE R-sq chi2 P>chi2

D_lrgrossinv 14 .017331 0.2426 58.60225 0.0000
D_lrconsump 14 .006487 0.1640 35.90802 0.0006
D_lrgdp 14 .007433 0.2989 78.02177 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

D_lrgrossinv
lrgrossinv

LD. .2337044 .0970048 2.41 0.016 .0435785 .4238303
L2D. .0746063 .0997035 0.75 0.454 -.1208089 .2700215
L3D. -.1986633 .1011362 -1.96 0.049 -.3968866 -.0004401
L4D. .1517106 .1004397 1.51 0.131 -.0451476 .3485688

lrconsump
LD. .4716336 .2613373 1.80 0.071 -.040578 .9838452
L2D. .1322693 .2758129 0.48 0.632 -.408314 .6728527
L3D. .2471462 .2697096 0.92 0.359 -.281475 .7757673
L4D. -.0177416 .2558472 -0.07 0.945 -.5191928 .4837097

lrgdp
LD. .1354875 .2455182 0.55 0.581 -.3457193 .6166942
L2D. .0414686 .254353 0.16 0.870 -.4570541 .5399914
L3D. .1304675 .2523745 0.52 0.605 -.3641774 .6251124
L4D. -.135457 .2366945 -0.57 0.567 -.5993698 .3284558

lrmbase
D1. .0396035 .1209596 0.33 0.743 -.1974729 .2766799

_cons -.0030005 .003383 -0.89 0.375 -.0096311 .0036302

D_lrconsump
lrgrossinv

LD. .0217782 .0363098 0.60 0.549 -.0493876 .092944
L2D. -.0523122 .0373199 -1.40 0.161 -.1254578 .0208335
L3D. -.0286832 .0378562 -0.76 0.449 -.1028799 .0455136
L4D. .0750044 .0375955 2.00 0.046 .0013186 .1486902

lrconsump
LD. -.0891814 .0978209 -0.91 0.362 -.2809068 .102544
L2D. .131353 .1032392 1.27 0.203 -.0709922 .3336982
L3D. .1927974 .1009547 1.91 0.056 -.0050702 .3906651
L4D. .0101163 .0957659 0.11 0.916 -.1775814 .1978139

lrgdp
LD. .2010624 .0918997 2.19 0.029 .0209424 .3811825
L2D. .0947972 .0952066 1.00 0.319 -.0918043 .2813987
L3D. -.0969827 .094466 -1.03 0.305 -.2821327 .0881673
L4D. -.1210815 .0885969 -1.37 0.172 -.2947282 .0525652

lrmbase
D1. .1071698 .0452763 2.37 0.018 .01843 .1959097

_cons .0051542 .0012663 4.07 0.000 .0026723 .0076361

D_lrgdp
lrgrossinv

LD. .1547249 .0416013 3.72 0.000 .0731878 .2362619
L2D. .0488007 .0427587 1.14 0.254 -.0350048 .1326061
L3D. -.1157621 .0433731 -2.67 0.008 -.2007718 -.0307524
L4D. .0321552 .0430744 0.75 0.455 -.052269 .1165795

lrconsump
LD. .3234787 .1120767 2.89 0.004 .1038125 .5431449
L2D. .1546979 .1182847 1.31 0.191 -.0771358 .3865315
L3D. .1368512 .1156672 1.18 0.237 -.0898524 .3635548
L4D. .1352606 .1097222 1.23 0.218 -.0797909 .3503121

lrgdp
LD. -.1872008 .1052925 -1.78 0.075 -.3935703 .0191687
L2D. -.0301044 .1090814 -0.28 0.783 -.2439 .1836912
L3D. -.0461081 .1082329 -0.43 0.670 -.2582407 .1660244
L4D. -.0820566 .1015084 -0.81 0.419 -.2810095 .1168962

lrmbase
D1. .0979823 .0518745 1.89 0.059 -.0036898 .1996545

_cons .0027223 .0014508 1.88 0.061 -.0001213 .0055659
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Vector autoregressive models varbasic

To evaluate whether the money base variable should be included in the
VAR, we can use testparm to construct a joint test of significance of
its coefficients:

. testparm D.lrmbase

( 1) [D_lrgrossinv]D.lrmbase = 0
( 2) [D_lrconsump]D.lrmbase = 0
( 3) [D_lrgdp]D.lrmbase = 0

chi2( 3) = 7.95
Prob > chi2 = 0.0471

The variable is marginally significant in the estimated system.
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Vector autoregressive models varbasic

A common diagnostic from a VAR are the set of block F tests, or
Granger causality tests, that consider whether each variable plays a
significant role in each of the equations. These tests may help to
establish a sensible causal ordering. They can be performed by
vargranger:

. vargranger

Granger causality Wald tests

Equation Excluded chi2 df Prob > chi2

D_lrgrossinv D.lrconsump 4.2531 4 0.373
D_lrgrossinv D.lrgdp 1.0999 4 0.894
D_lrgrossinv ALL 10.34 8 0.242

D_lrconsump D.lrgrossinv 5.8806 4 0.208
D_lrconsump D.lrgdp 8.1826 4 0.085
D_lrconsump ALL 12.647 8 0.125

D_lrgdp D.lrgrossinv 22.204 4 0.000
D_lrgdp D.lrconsump 11.349 4 0.023
D_lrgdp ALL 42.98 8 0.000
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Vector autoregressive models varbasic

We may also want to compute selection order criteria to gauge
whether we have included sufficient lags in the VAR. Introducing too
many lags wastes degrees of freedom, while too few lags leave the
equations potentially misspecified and are likely to cause
autocorrelation in the residuals. The varsoc command will produce
selection order criteria, and highlight the optimal lag.

. varsoc

Selection-order criteria
Sample: 1960q2 - 2005q4 Number of obs = 183

lag LL LR df p FPE AIC HQIC SBIC

0 1851.22 3.5e-13 -20.1663 -20.1237 -20.0611
1 1887.29 72.138* 9 0.000 2.6e-13* -20.4622* -20.3555* -20.1991*
2 1894.14 13.716 9 0.133 2.7e-13 -20.4387 -20.2681 -20.0178
3 1902.58 16.866 9 0.051 2.7e-13 -20.4325 -20.1979 -19.8538
4 1907.06 8.9665 9 0.440 2.8e-13 -20.3832 -20.0846 -19.6466

Endogenous: D.lrgrossinv D.lrconsump D.lrgdp
Exogenous: D.lrmbase _cons
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Vector autoregressive models varbasic

We should also be concerned with stability of the VAR, which requires
the moduli of the eigenvalues of the dynamic matrix to lie within the
unit circle. As there is more than one lag in the VAR we have
estimated, it is likely that complex eigenvalues, leading to cycles, will
be encountered.

. varstable

Eigenvalue stability condition

Eigenvalue Modulus

.6916791 .691679
-.5793137 + .1840599i .607851
-.5793137 - .1840599i .607851
-.3792302 + .4714717i .605063
-.3792302 - .4714717i .605063
.1193592 + .5921967i .604106
.1193592 - .5921967i .604106
.5317127 + .2672997i .59512
.5317127 - .2672997i .59512
-.4579249 .457925
.1692559 + .3870966i .422482
.1692559 - .3870966i .422482

All the eigenvalues lie inside the unit circle.
VAR satisfies stability condition.
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Vector autoregressive models varbasic

A digression on interpreting the eigenvalues and their moduli: the
complex number λ = a + b ı with modulus |λ| =

√
a2 + b2 can be

expressed in polar coordinates as |λ|exp(ı θ), where θ is the angle (in
radians) of the line segment a + b ı. Note that
exp(ı θ) = cos(θ) + ı sin(θ), a periodic function.

The period of this function will be 2π
θ time units. For θ we can substitute

atan2(a,b) where atan2(·) is the variation on the arctangent function
available in most programming languages (be careful with the order of
arguments, though).

Thus, for the first complex conjugate pair, −0.579± 0.1841 ı, we have
periodicity of 2.217 quarters. For the second, −0.379± 0.471 ı, we
have 2.795 quarters. For the third, 0.119± 0.592 ı, we have 4.580
quarters, and so on.
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Vector autoregressive models varbasic

As the estimated VAR appears stable, we can produce IRFs and
FEVDs in tabular or graphical form:

. irf create icy, step(8) set(res1)
(file res1.irf created)
(file res1.irf now active)
(file res1.irf updated)

. irf table oirf coirf, impulse(D.lrgrossinv) response(D.lrconsump) noci stderr
> or

Results from icy

(1) (1) (1) (1)
step oirf S.E. coirf S.E.

0 .003334 .000427 .003334 .000427
1 .000981 .000465 .004315 .000648
2 .000607 .000468 .004922 .000882
3 .000223 .000471 .005145 .001101
4 .000338 .000431 .005483 .001258
5 -.000034 .000289 .005449 .001428
6 .000209 .000244 .005658 .001571
7 .000115 .000161 .005773 .001674
8 .000092 .00012 .005865 .001757

(1) irfname = icy, impulse = D.lrgrossinv, and response = D.lrconsump
. irf graph oirf coirf, impulse(D.lrgrossinv) response(D.lrconsump) ///
> lstep(1) scheme(s2mono)
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Vector autoregressive models varbasic
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Graphs by irfname, impulse variable, and response variable
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Vector autoregressive models Structural VAR estimation

Structural VAR estimation

All of the capabilities we have illustrated for reduced-form VARs are
also available for structural VARs, which are estimated with the svar
command. In the SVAR framework, the orthogonalization matrix P is
not constructed manually as the Cholesky decomposition of the error
covariance matrix. Instead, restrictions are placed on the P matrix,
either in terms of short-run restrictions on the contemporaneous
covariances between shocks, or in terms of restrictions on the long-run
accumulated effects of the shocks.
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Vector autoregressive models Short-run SVAR models

Short-run SVAR models

A short-run SVAR model without exogenous variables can be written
as

A(IK − A1L− A2L2 − · · · − ApLp)yt = Aεt = Bet

where L is the lag operator. The vector εt refers to the original shocks
in the model, with covariance matrix Σ, while the vector et are a set of
orthogonalized disturbances with covariance matrix IK .

In a short-run SVAR, we obtain identification by placing restrictions on
the matrices A and B, which are assumed to be nonsingular. The
orthgonalization matrix Psr = A−1B is then related to the error
covariance matrix by Σ = Psr P′sr .

Christopher F Baum (BC / DIW) VAR, SVAR and VECM models Boston College, Spring 2015 28 / 62



Vector autoregressive models Short-run SVAR models

Short-run SVAR models

A short-run SVAR model without exogenous variables can be written
as

A(IK − A1L− A2L2 − · · · − ApLp)yt = Aεt = Bet

where L is the lag operator. The vector εt refers to the original shocks
in the model, with covariance matrix Σ, while the vector et are a set of
orthogonalized disturbances with covariance matrix IK .

In a short-run SVAR, we obtain identification by placing restrictions on
the matrices A and B, which are assumed to be nonsingular. The
orthgonalization matrix Psr = A−1B is then related to the error
covariance matrix by Σ = Psr P′sr .

Christopher F Baum (BC / DIW) VAR, SVAR and VECM models Boston College, Spring 2015 28 / 62



Vector autoregressive models Short-run SVAR models

As there are K (K + 1)/2 free parameters in Σ, given its symmetric
nature, only that many parameters may be estimated in the A and B
matrices. As there are 2K 2 parameters in A and B, the order condition
for identification requires that 2K 2 − K (K + 1)/2 restrictions be placed
on the elements of these matrices.
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Vector autoregressive models Short-run SVAR models

For instance, we could reproduce the effect of the Cholesky
decomposition by defining matrices A and B appropriately. In the
syntax of svar, a missing value in a matrix is a free parameter to be
estimated. The form of the A matrix imposes the recursive structure,
while the diagonal B orthogonalizes the effects of innovations.

. matrix A = (1, 0, 0 \ ., 1, 0 \ ., ., 1)

. matrix B = (., 0, 0 \ 0, ., 0 \ 0, 0, 1)

. matrix list A

A[3,3]
c1 c2 c3

r1 1 0 0
r2 . 1 0
r3 . . 1

. matrix list B

symmetric B[3,3]
c1 c2 c3

r1 .
r2 0 .
r3 0 0 1
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Vector autoregressive models Short-run SVAR models

. svar D.lrgrossinv D.lrconsump D.lrgdp if tin(,2005q4), aeq(A) beq(B) nolog
Estimating short-run parameters

Structural vector autoregression

( 1) [a_1_1]_cons = 1
( 2) [a_1_2]_cons = 0
( 3) [a_1_3]_cons = 0
( 4) [a_2_2]_cons = 1
( 5) [a_2_3]_cons = 0
( 6) [a_3_3]_cons = 1
( 7) [b_1_2]_cons = 0
( 8) [b_1_3]_cons = 0
( 9) [b_2_1]_cons = 0
(10) [b_2_3]_cons = 0
(11) [b_3_1]_cons = 0
(12) [b_3_2]_cons = 0

Sample: 1959q4 - 2005q4 No. of obs = 185
Exactly identified model Log likelihood = 1905.169

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/a_1_1 1 . . . . .
/a_2_1 -.2030461 .0232562 -8.73 0.000 -.2486274 -.1574649
/a_3_1 -.1827889 .0260518 -7.02 0.000 -.2338495 -.1317283
/a_1_2 (omitted)
/a_2_2 1 . . . . .
/a_3_2 -.4994815 .069309 -7.21 0.000 -.6353246 -.3636384
/a_1_3 (omitted)
/a_2_3 (omitted)
/a_3_3 1 . . . . .

/b_1_1 .0171686 .0008926 19.24 0.000 .0154193 .018918
/b_2_1 (omitted)
/b_3_1 (omitted)
/b_1_2 (omitted)
/b_2_2 .0054308 .0002823 19.24 0.000 .0048774 .0059841
/b_3_2 (omitted)
/b_1_3 (omitted)
/b_2_3 (omitted)
/b_3_3 .0051196 .0002662 19.24 0.000 .0045979 .0056412
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Vector autoregressive models Short-run SVAR models

The output from the VAR can also be displayed with the var option.
This model is exactly identified; if we impose additional restrictions on
the parameters, it would be an overidentified model, and the
overidentifying restrictions could be tested.

For instance, we could impose the restriction that A2,1 = 0 by placing a
zero in that cell of the matrix rather than a missing value. This implies
that changes in the first variable (D.lrgrossinv) do not
contemporaneously affect the second variable, (D.lrconsump).

. matrix Arest = (1, 0, 0 \ 0, 1, 0 \ ., ., 1)

. matrix list Arest

Arest[3,3]
c1 c2 c3

r1 1 0 0
r2 0 1 0
r3 . . 1
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Vector autoregressive models Short-run SVAR models

. svar D.lrgrossinv D.lrconsump D.lrgdp if tin(,2005q4), aeq(Arest) beq(B) nolog
Estimating short-run parameters

Structural vector autoregression

...

Sample: 1959q4 - 2005q4 No. of obs = 185
Overidentified model Log likelihood = 1873.254

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/a_1_1 1 . . . . .
/a_2_1 (omitted)
/a_3_1 -.1827926 .0219237 -8.34 0.000 -.2257622 -.1398229
/a_1_2 (omitted)
/a_2_2 1 . . . . .
/a_3_2 -.499383 .0583265 -8.56 0.000 -.6137008 -.3850652
/a_1_3 (omitted)
/a_2_3 (omitted)
/a_3_3 1 . . . . .

...

LR test of identifying restrictions: chi2( 1)= 63.83 Prob > chi2 = 0.000

As we would expect from the significant coefficient in the exactly
identified VAR, the overidentifying restriction is clearly rejected.
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Vector autoregressive models Long-run SVAR models

Long-run SVAR models

A short-run SVAR model without exogenous variables can be written
as

A(IK − A1L− A2L2 − · · · − ApLp)yt = AĀ yt = B et

where Ā is the parenthesized expression. If we set A = I, we can write
this equation as

yt = Ā−1B et = C et

In a long-run SVAR, constraints are placed on elements of the C
matrix. These constraints are often exclusion restrictions. For
instance, constraining C1,2 = 0 forces the long-run response of
variable 1 to a shock to variable 2 to zero.
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Vector autoregressive models Long-run SVAR models

We illustrate with a two-variable SVAR in the first differences in the
logs of real money and real GDP. The long-run restrictions of a
diagonal C matrix implies that shocks to the money supply process
have no long-run effects on GDP growth, and shocks to the GDP
process have no long-run effects on the money supply.

. matrix lr = (., 0\0, .)

. matrix list lr

symmetric lr[2,2]
c1 c2

r1 .
r2 0 .
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Vector autoregressive models Long-run SVAR models

. svar D.lrmbase D.lrgdp, lags(4) lreq(lr) nolog
Estimating long-run parameters

Structural vector autoregression

( 1) [c_1_2]_cons = 0
( 2) [c_2_1]_cons = 0

Sample: 1960q2 - 2010q3 No. of obs = 202
Overidentified model Log likelihood = 1020.662

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/c_1_1 .0524697 .0026105 20.10 0.000 .0473532 .0575861
/c_2_1 (omitted)
/c_1_2 (omitted)
/c_2_2 .0093022 .0004628 20.10 0.000 .0083951 .0102092

LR test of identifying restrictions: chi2( 1)= 1.448 Prob > chi2 = 0.229

The test of overidentifying restrictions cannot reject the validity of the
constraints imposed on the long-run responses.
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Vector error correction models

Vector error correction models (VECMs)

VECMs may be estimated by Stata’s vec command. These models
are employed because many economic time series appear to be
‘first-difference stationary,’ with their levels exhibiting unit root or
nonstationary behavior. Conventional regression estimators, including
VARs, have good properties when applied to covariance-stationary
time series, but encounter difficulties when applied to nonstationary or
integrated processes.

These difficulties were illustrated by Granger and Newbold
(J. Econometrics, 1974) when they introduced the concept of spurious
regressions. If you have two independent random walk processes, a
regression of one on the other will yield a significant coefficient, even
though they are not related in any way.
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Vector error correction models cointegration

This insight, and Nelson and Plosser’s findings (J. Mon. Ec., 1982) that
unit roots might be present in a wide variety of macroeconomic series
in levels or logarithms, gave rise to the industry of unit root testing, and
the implication that variables should be rendered stationary by
differencing before they are included in an econometric model.

Further theoretical developments by Granger and Engle in their
celebrated paper (Econometrica, 1987) raised the possibility that two
or more integrated, nonstationary time series might be cointegrated, so
that some linear combination of these series could be stationary even
though each series is not.
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Vector error correction models cointegration

If two series are both integrated (of order one, or I(1)) we could model
their interrelationship by taking first differences of each series and
including the differences in a VAR or a structural model.

However, this approach would be suboptimal if it was determined that
these series are indeed cointegrated. In that case, the VAR would only
express the short-run responses of these series to innovations in each
series. This implies that the simple regression in first differences is
misspecified.

If the series are cointegrated, they move together in the long run. A
VAR in first differences, although properly specified in terms of
covariance-stationary series, will not capture those long-run
tendences.
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Vector error correction models The error-correction term

Accordingly, the VAR concept may be extended to the vector
error-correction model, or VECM, where there is evidence of
cointegration among two or more series. The model is fit to the first
differences of the nonstationary variables, but a lagged error-correction
term is added to the relationship.

In the case of two variables, this term is the lagged residual from the
cointegrating regression, of one of the series on the other in levels. It
expresses the prior disequilibrium from the long-run relationship, in
which that residual would be zero.

In the case of multiple variables, there is a vector of error-correction
terms, of length equal to the number of cointegrating relationships, or
cointegrating vectors, among the series.
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Vector error correction models The error-correction term

In terms of economic content, we might expect that there is some
long-run value of the dividend/price ratio for common equities. During
market ‘bubbles’, the stock price index may be high and the ratio low,
but we would expect a market correction to return the ratio to its
long-run value. A similar rationale can be offered about the ratio of
rents to housing prices in a housing market where there is potential to
construct new rental housing as well as single-family homes.

To extend the concept to more than two variables, we might rely on the
concept of purchasing power parity (PPP) in international trade, which
defines a relationship between the nominal exchange rate and the
price indices in the foreign and domestic economies. We might find
episodes where a currency appears over- or undervalued, but in the
absence of central bank intervention and effective exchange controls,
we expect that the ‘law of one price’ will provide some long-run anchor
to these three measures’ relationship.
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Vector error correction models The error-correction term

Consider two series, yt and xt , that obey the following equations:

yt + βxt = εt , εt = εt−1 + ωt

yt + αxt = νt , νt = ρνt−1 + ζt , |ρ| < 1

Assume that ωt and ζt are i .i .d . disturbances, correlated with each
other. The random-walk nature of εt implies that both yt and xt are also
I(1), or nonstationary, as each side of the equation must have the
same order of integration. By the same token, the stationary nature of
the νt process implies that the linear combination (yt + αxt ) must also
be stationary, or I(0).

Thus yt and xt cointegrate, with a cointegrating vector (1, α).
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Vector error correction models The error-correction term

We can rewrite the system as

∆yt = βδzt−1 + η1t

∆xt = −δzt−1 + η2t

where δ = (1− ρ)/(α− β), zt = yt + αxt , and the errors (η1t , η2t ) are
stationary linear combinations of (ωt , ζt ).

When yt and xt are in equilibrium, zt = 0. The coefficients on zt
indicate how the system responds to disequilibrium. A stable dynamic
system must exhibit negative feedback: for instance, in a functioning
market, excess demand must cause the price to rise to clear the
market.
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Vector error correction models The error-correction term

In the case of two nonstationary (I(1)) variables yt and xt , if there are
two nonzero values (a,b) such that ayt + bxt is stationary, or I(0), then
the variables are cointegrated. To identify the cointegrating vector, we
set one of the values (a,b) to 1 and estimate the other. As Granger
and Engle showed, this can be done by a regression in levels. If the
residuals from that ‘Granger–Engle’ regression are stationary,
cointegration is established.

In the general case of K variables, there may be 1, 2,. . . ,(K-1)
cointegrating vectors representing stationary linear combinations. That
is, if yt is a vector of I(1) variables and there exists a vector β such that
βyt is a vector of I(0) variables, then the variables in yt are said to be
cointegrated with cointegrating vector β. In that case we need to
estimate the number of cointegrating relationships, not merely whether
cointegration exists among these series.
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Vector error correction models VAR and VECM representations

For a K -variable VAR with p lags,

yt = v + A1yt−1 + · · ·+ Apyt−p + εt

let εt be i .i .d . normal over time with covariance matrix Σ. We may
rewrite the VAR as a VECM:

∆yt = v + Πyt−1 +

p−1∑
i=1

Γi∆yt−i + εt

where Π =
∑j=p

j=1 Aj − Ik and Γi = −
∑j=p

j=i+1 Aj .

Christopher F Baum (BC / DIW) VAR, SVAR and VECM models Boston College, Spring 2015 45 / 62



Vector error correction models VAR and VECM representations

If all variables in yt are I(1), the matrix Π has rank 0 ≤ r < K , where r
is the number of linearly independent cointegrating vectors. If the
variables are cointegrated (r > 0) the VAR in first differences is
misspecified as it excludes the error correction term.

If the rank of Π = 0, there is no cointegration among the nonstationary
variables, and a VAR in their first differences is consistent.

If the rank of Π = K , all of the variables in yt are I(0) and a VAR in
their levels is consistent.

If the rank of Π is r > 0, it may be expressed as Π = αβ′, where α and
β are (K × r) matrices of rank r . We must place restrictions on these
matrices’ elements in order to identify the system.
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Vector error correction models The Johansen framework

Stata’s implementation of VECM modeling is based on the maximum
likelihood framework of Johansen (J. Ec. Dyn. Ctrl., 1988 and
subsequent works). In that framework, deterministic trends can appear
in the means of the differenced series, or in the mean of the
cointegrating relationship. The constant term in the VECM implies a
linear trend in the levels of the variables. Thus, a time trend in the
equation implies quadratic trends in the level data.

Writing the matrix of coefficients on the vector error correction term
yt−1 as Π = αβ′, we can incorporate a trend in the cointegrating
relationship and the equation itself as

∆yt = α(β′yt−1 + µ+ ρt) +

p−1∑
i=1

Γi∆yt−i + γ + τ t + εt
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Vector error correction models The Johansen framework

Johansen spells out five cases for estimation of the VECM:
1 Unrestricted trend: estimated as shown, cointegrating equations

are trend stationary
2 Restricted trend, τ = 0: cointegrating equations are trend

stationary, and trends in levels are linear but not quadratic
3 Unrestricted constant: τ = ρ = 0: cointegrating equations are

stationary around constant means, linear trend in levels
4 Restricted constant: τ = ρ = γ = 0: cointegrating equations are

stationary around constant means, no linear time trends in the
data

5 No trend: τ = ρ = γ = µ = 0: cointegrating equations, levels and
differences of the data have means of zero

We have not illustrated VECMs with additional (strictly) exogenous
variables, but they may be added, just as in a VAR model.
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Vector error correction models A VECM example

To consistently test for cointegration, we must choose the appropriate
lag length. The varsoc command is capable of making that
determination, as illustrated earlier. We may then use the vecrank
command to test for cointegration via Johansen’s max-eigenvalue
statistic and trace statistic.

We illustrate a simple VECM using the Penn World Tables data. In that
data set, the price index is the relative price vs. the US, and the
nominal exchange rate is expressed as local currency units per US
dollar. If the real exchange rate is a cointegrating combination, the logs
of the price index and the nominal exchange rate should be
cointegrated. We test this hypothesis with respect to the UK, using
Stata’s default of an unrestricted constant in the taxonomy given
above.
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Vector error correction models A VECM example

. use pwt6_3, clear
(Penn World Tables 6.3, August 2009)

. keep if inlist(isocode,"GBR")
(10962 observations deleted)

. // p already defined as UK/US relative price

. g lp = log(p)

. // xrat is nominal exchange rate, GBP per USD

. g lxrat = log(xrat)

. varsoc lp lxrat if tin(,2002)

Selection-order criteria
Sample: 1954 - 2002 Number of obs = 49

lag LL LR df p FPE AIC HQIC SBIC

0 19.4466 .001682 -.712107 -.682811 -.63489
1 173.914 308.93 4 0.000 3.6e-06 -6.85363 -6.76575 -6.62198
2 206.551 65.275* 4 0.000 1.1e-06* -8.02251* -7.87603* -7.63642*
3 210.351 7.5993 4 0.107 1.1e-06 -8.01433 -7.80926 -7.47381
4 214.265 7.827 4 0.098 1.1e-06 -8.0108 -7.74714 -7.31585

Endogenous: lp lxrat
Exogenous: _cons

Two lags are selected by most of the criteria.
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Vector error correction models A VECM example

. vecrank lp lxrat if tin(,2002)

Johansen tests for cointegration
Trend: constant Number of obs = 51
Sample: 1952 - 2002 Lags = 2

5%
maximum trace critical

rank parms LL eigenvalue statistic value
0 6 202.92635 . 22.9305 15.41
1 9 213.94024 0.35074 0.9028* 3.76
2 10 214.39162 0.01755

We can reject the null of 0 cointegrating vectors in favor of > 0 via the
trace statistic. We cannot reject the null of 1 cointegrating vector in
favor of > 1. Thus, we conclude that there is one cointegrating vector.
For two series, this could have also been determined by a
Granger–Engle regression in levels.
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Vector error correction models A VECM example

. vec lp lxrat if tin(,2002), lags(2)

Vector error-correction model

Sample: 1952 - 2002 No. of obs = 51
AIC = -8.036872

Log likelihood = 213.9402 HQIC = -7.9066
Det(Sigma_ml) = 7.79e-07 SBIC = -7.695962

Equation Parms RMSE R-sq chi2 P>chi2

D_lp 4 .057538 0.4363 36.37753 0.0000
D_lxrat 4 .055753 0.4496 38.38598 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

D_lp
_ce1
L1. -.26966 .0536001 -5.03 0.000 -.3747143 -.1646057

lp
LD. .4083733 .324227 1.26 0.208 -.2270999 1.043847

lxrat
LD. -.1750804 .3309682 -0.53 0.597 -.8237663 .4736054

_cons .0027061 .0111043 0.24 0.807 -.019058 .0244702

...
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Vector error correction models A VECM example

D_lxrat
_ce1
L1. .2537426 .0519368 4.89 0.000 .1519484 .3555369

lp
LD. .3566706 .3141656 1.14 0.256 -.2590827 .9724239

lxrat
LD. .8975872 .3206977 2.80 0.005 .2690313 1.526143

_cons .0028758 .0107597 0.27 0.789 -.0182129 .0239645

Cointegrating equations

Equation Parms chi2 P>chi2

_ce1 1 44.70585 0.0000

Identification: beta is exactly identified

Johansen normalization restriction imposed

beta Coef. Std. Err. z P>|z| [95% Conf. Interval]

_ce1
lp 1 . . . . .

lxrat -.7842433 .1172921 -6.69 0.000 -1.014131 -.5543551
_cons -4.982628 . . . . .

Christopher F Baum (BC / DIW) VAR, SVAR and VECM models Boston College, Spring 2015 53 / 62



Vector error correction models A VECM example

In the lp equation, the L1._ce1 term is the lagged error correction
term. It is significantly negative, representing the negative feedback
necessary in relative prices to bring the real exchange rate back to
equilibrium. The short-run coefficients in this equation are not
significantly different from zero.

In the lxrat equation, the lagged error correction term is positive, as
it must be for the other variable in the relationship: that is, if
(log p − log e) is above long-run equilibrium, either p must fall or e
must rise. The short-run coefficient on the exchange rate is positive
and significant.
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Vector error correction models A VECM example

The estimated cointegrating vector is listed at the foot of the output,
normalized with a coefficient of unity on lp and an estimated
coefficient of −0.78 on lxrat, significantly different from zero. The
constant term corresponds to the µ term in the representation given
above.

The significance of the lagged error correction term in this equation,
and the significant coefficient estimated in the cointegrating vector,
indicates that a VAR in first differences of these variables would yield
inconsistent estimates due to misspecification.
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Vector error correction models In-sample VECM forecasts

We can evaluate the cointegrating equation by using predict to
generate its in-sample values:

. predict ce1 if e(sample), ce equ(#1)

. tsline ce1 if e(sample)
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Vector error correction models In-sample VECM forecasts
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Vector error correction models In-sample VECM forecasts

We should also evaluate the stability of the estimated VECM. For a
K-variable model with r cointegrating relationships, the companion
matrix will have K − r unit eigenvalues. For stability, the moduli of the
remaining r eigenvalues should be strictly less than unity.

. vecstable, graph

Eigenvalue stability condition

Eigenvalue Modulus

1 1
.7660493 .766049
.5356276 + .522604i .748339
.5356276 - .522604i .748339

The VECM specification imposes a unit modulus.

The eigenvalues meet the stability condition.
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Vector error correction models In-sample VECM forecasts
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Vector error correction models Dynamic VECM forecasts

We can use much of the same post-estimation apparatus as
developed for VARs for VECMs. Impulse response functions,
orthogonalized IRFs, FEVDs, and the like can be constructed for
VECMs. However, the presence of the integrated variables (and unit
moduli) in the VECM representation implies that shocks may be
permanent as well as transitory.

We illustrate here one feature of Stata’s vec suite: the capability to
compute dynamic forecasts from a VECM. We estimated the model on
annual data through 2002, and now forecast through the end of
available data in 2007:

. tsset year
time variable: year, 1950 to 2007

delta: 1 year

. fcast compute ppp_, step(5)

. fcast graph ppp_lp ppp_lxrat, observed scheme(s2mono) legend(rows(1)) ///
> byopts(ti("Ex ante forecasts, UK/US RER components") t2("2003-2007"))
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Vector error correction models Dynamic VECM forecasts
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Vector error correction models Dynamic VECM forecasts

We see that the model’s predicted log relative price was considerably
lower than that observed, while the predicted log nominal exchange
rate was considerably higher than that observed over this
out-of-sample period.

Consult the online Stata Time Series manual for much greater detail
on Stata’s VECM capabilities, applications to multiple-variable systems
and alternative treatments of deterministic trends in the VECM context.
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