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Chapter 7: Multiple regression analysis with

qualitative information: Binary (or dummy)

variables

We often consider relationships between ob-

served outcomes and qualitative factors: mod-

els in which a continuous dependent variable

is related to a number of explanatory factors,

some of which are quantitative, and some of

which are qualitative. In econometrics, we also

consider models of qualitative dependent vari-

ables, but we will not explore those models in

this course due to time constraints. But we

can readily evaluate the use of qualitative in-

formation in standard regression models with

continuous dependent variables.

Qualitative information often arises in terms

of some coding, or index, which takes on a



number of values: for instance, we may know

in which one of the six New England states

each of the individuals in our sample resides.

The data themselves may be coded with the

biliteral “MA”, “RI”, “ME”, etc. How can

we use this factor in a regression equation?

In the data, state takes on six distinct val-

ues. We must create six binary variables, or

dummy variables, each of which will refer to

one state–that is, that variable will be 1 if the

individual comes from that state, and 0 oth-

erwise. We can generate this set of 6 vari-

ables easily in Stata with the command tab

state, gen(st), which will create 6 new vari-

ables in our dataset: st1, st2, ... st6. Each

of these variables are dummies–that is, they

only contain 0 or 1 values. If we add up these

variables, we get–exactly–a vector of 1’s, sug-

gesting that we will never want to use all 6

variables in a regression (since by knowing the

values of any 5...) We may also find the pro-

portions of each state’s citizens in our sample



very easily: summ st* will give the descriptive

statistics of all 6 variables, and the mean of

each st dummy is the sample proportion living

in that state.

How can we use these dummy variables? Say

that we wanted to know whether incomes dif-

fered significantly across the 6-state region.

What if we regressed income on any five of

these st dummies?

income = β0+β1st1+β2st2+β3st3+β4st4+β5st5+u

(1)

where I have suppressed the observation sub-

scripts. What are the regression coefficients in

this case? β0 is the average income in the 6th

state–the dummy for which is excluded from

the regression. β1 is the difference between

the income in state 1 and the income in state



6. β2 is the difference between the income

in state 2 and the income in state 6, and so

on. What is the ordinary “ANOVA F” in this

context–the test that all the slopes are equal

to zero? Precisely the test of the null hypoth-

esis:

H0 : µ1 = µ2 = µ3 = µ4 = µ5 = µ6 (2)

versus the alternative that not all six of the

state means are the same value. It turns out

that we can test this same hypothesis by ex-

cluding any one of the dummies, and including

the remaining five in the regression. The co-

efficients will differ, but the p− value of the

ANOVA F will be identical for any of these

regressions. In fact, this regression is an ex-

ample of “classical one-way ANOVA”–testing

whether a qualitative factor (in this case, state

of residence) explains a significant fraction of

the variation in income.



What if we wanted to generate point and in-

terval estimates of the state means of income?

Then it would be most convenient to refor-

mulate (??) by including all 6 dummies, and

removing the constant term. This is, alge-

braically, the same regression. The coefficient

on the now-included st6 will be precisely that

reported above as β0. The coefficient reported

for st1 will be precisely (β0 + β1) from the pre-

vious model, and so on. But now those co-

efficients will be reported with confidence in-

tervals around the state means. Those statis-

tics could all be calculated if you only esti-

mated (??), but to do so you would have to

use lincom for each coefficient. Running this

alternative form of the model is much more

convenient for estimating the state means in

point and interval form. But to test the hy-

pothesis (??), it is most convenient to run the

original regression–since then the ANOVA F

performs the appropriate test with no further

ado.



What if we fail to reject the ANOVA F null?

Then it appears that the qualitative factor “state”

does not explain a significant fraction of the

variation in income. Perhaps the relevant clas-

sification is between northern, more rural New

England states (NEN) and southern, more pop-

ulated New England states (NES). Given the

nature of dummy variables, we may generate

these dummies two ways. We can express the

Boolean condition in terms of the state vari-

able: gen nen = (state==‘‘VT’’ | state==‘‘NH’’

| state==‘‘ME’’). This expression, with parens

on the right hand side of the generate state-

ment, evaluates that expression and returns

true (1) or false (0). The vertical bar (|) is

Stata’s OR operator; since every person in the

sample lives in one and only one state, we must

use OR to phrase the condition that they live in

northern New England. But there is another

way to generate this nen dummy, given that

we have st1...st6 defined for the regression



above. Let’s say that Vermont, New Hamp-

shire and Maine have been coded as st6, st4

and st3, respectively. We may just gen nen =

st3+st4+st6, since the sum of mutually exclu-

sive and exhaustive dummies must be another

dummy. To check, the resulting nen will have

a mean equal to the percentage of the sample

that live in northern New England; the equiva-

lent nes dummy will have a mean for southern

New England residents; and the sum of those

two means will of course be 1. We can then

run a simplified form of our model as regress

inc nen; the ANOVA F statistic for that regres-

sion tests the null hypothesis that incomes in

northern and southern New England do not

differ significantly. Since we have excluded

nes, the “slope” coefficient on nen measures

the amount by which northern New England

income differs from southern New England in-

come; the mean income for southern New Eng-

land is the constant term. If we want point and



interval estimates for those means, we should

regress inc nen nes, noc.

Regression with continuous and dummy vari-

ables

In the above examples, we have estimated “pure

ANOVA” models–regression models in which

all of the explanatory variables are dummies. In

econometric research, we often want to com-

bine quantitative and qualitative information,

including some regressors that are measurable

and others that are dummies. Consder the

simplest example: we have data on individu-

als’ wages, years of education, and their gen-

der. We could create two gender dummies,

male and female, but we will only need one in

the analysis: say, female. We create this vari-

able as gen female = (gender==’’F’’). We can

then estimate the model:

wage = β0 + β1educ + β2female + u (3)



The constant term in this model now becomes

the wage for a male with zero years of ed-

ucation. Male wages are predicted as b0 +

b1educ, while female wages are predicted as

b0+ b1educ+ b2. The gender differential is thus

b2. How would we test for the existence of “sta-

tistical discrimination”–that, say, females with

the same qualifications are paid a lower wage?

This would be H0 : β2 < 0. The t− statistic

for b2 will provide us with this hypothesis test.

What is this model saying about wage struc-

ture? Wages are a linear function of the years

of education. If b2 is significantly different

than zero, then there are two “wage profiles”–

parallel lines in {educ, wage} space, each with

a slope of b1, with their intercepts differing by

b2.

What if we wanted to expand this model to

consider the possibility that wages differ by

both gender and race? Say that each worker is



classified as race=white or race=black. Then

we could gen black = (race==‘‘black’’) to cre-

ate the dummy variable, and add it to (??).

What, now, is the constant term? The wage

for a white male with zero years of education.

Is there a significant race differential in wages?

If so, the coefficient b3, which measures the

difference between white and black wages, ce-

teris paribus, will be significantly different from

zero. In {educ, wage} space, the model can be

represented as four parallel lines, with each in-

tercept labelled by a combination of gender

and race.

What if our racial data classified each worker

as white, Black or Asian? Then we would run

the regression:

wage = β0+β1educ+β2female+β3Black+β4Asian+u

(4)



where the constant term still refers to a white

male. In this model, b3 measures the differ-

ence between black and white wages, ceteris

paribus, while b4 measures the difference be-

tween Asian and white wages. Each can be

examined for significance. But how can we

determine whether the qualitative factor, race,

affects wages? That is a joint test, that both

β3 = 0 and β4 = 0, and should be conducted

as such. We should not make judgments based

on the individual dummies’ coefficients, but

should rather include both race variables if the

null is rejected, or remove them both if it is

not. When we examine a qualitative factor,

which may give rise to a number of dummy

variables, they should be treated as a group.

For instance, we might want to modify (??)

to consider the effect of state of residence:

wage = β0 + β1educ + β2female +
5∑

j=1

γjstj + u

(5)



where we include any 5 of the 6 st variables

designating the New England states. The test

that wage levels differ significantly due to state

of residence is the joint test that γj = 0, j =

1, ...,5. A judgment concerning the relevance of

state of residence should be made on the basis

of this joint test (an F-test with 5 numerator

degrees of freedom).

Note that if the dependent variable was mea-

sured in log form, the coefficients on dummies

would be interpreted as percentage changes; if

(??) was respecified to place logwage as the

dependent variable, the coefficient b1 would

measure the percentage return to education

(how many percent does the wage change for

each additional year of education), while the

coefficient b2 would measure the (approximate)

percentage difference in wage levels between

females and males, ceteris paribus. The state



dummies would, likewise, measure the percent-

age difference in wage levels between that state

and the excluded state (number 6).

We must be careful when working with vari-

ables that have an ordinal interpretation, and

are thus coded in numeric form, to treat them

as ordinal. For instance, if we model the in-

terest rate corporations must pay to borrow

(corprt) as a function of their credit rating,

we consider that Moody’s and Standard and

Poor’s assign credit ratings somewhat like grades:

AAA, AA, A, BAA, BA, B, C, et cetera. Those

could be coded as 1,2,...,7. Just as we can

agree that an “A” grade is better than a “B”,

a triple-A bond rating results in a lower bor-

rowing cost than a double-A rating. But while

GPAs are measured on a clear four-point scale,

the bond ratings are merely ordinal, or ordered:

everyone agrees on the rating scale, but the

differential between AA borrowers’ rates and A



borrowers’ rates might be much smaller than

that between B and C borrowers’ rates: es-

pecially the case if C denotes “below invest-

ment grade”, which will reduce the market for

such bonds. Thus, although we might have

a numeric index corresponding to AAA...C, we

should not assume that ∂corprt/∂index is con-

stant; we should not treat index as a cardi-

nal measure. Clearly, the appropriate way to

proceed is to create dummy variables for each

rating class, and include all but one of those

variables in a regression of corprt on bond rat-

ing and other relevant factors. For instance, if

we leave out the AAA dummy, all of the ratings

class dummies’ coefficients will then measure

the degree to which those borrowers’ bonds

bear higher rates than those of AAA borrowers.

But we could just as well leave out the C rating

class dummy, and measure the effects of rat-

ings classes relative to the worst credits’ cost

of borrowing.



Interactions involving dummy variables

Just as continuous variables may be interacted

in regression equations, so can dummy vari-

ables. We might, for instance, have one set of

dummies indicating the gender of respondents

(female) and another set indicating their mar-

ital status (married). We could regress lwage

on these two dummies:

lwage = b0 + b1female + b2married + u

which gives rise to the following classification

of mean wages, conditional on the two fac-

tors (which is thus a classic “two-way ANOVA”

setup):

male female
unmarried b0 b0 + b1
married b0 + b2 b0 + b1 + b2

We assume that the two effects, gender and

marital status, have independent effects on the



dependent variable. Why? Because this joint

distribution is modelled as the product of the

marginals. What is the difference between male

and female wages? b1, irrespective of marital

status. What is the difference between un-

married and married wages? b2, irrespective of

gender.

If we were to relax the assumption that gen-

der and marital status had independent effects

on wages, we would want to consider their

interaction. Since there are only two cate-

gories of each variable, we only need one in-

teraction term, fm, to capture the possible ef-

fects. As above, that term could be generated

as a Boolean (noting that & is Stata’s AND

operator): gen fm=(female==1) & (married==1),

or we could generate it algebraically, as gen

fm=female*married. In either case, it represents

the intersection of the sets. We then add a

term, b3fm, to the equation, which then ap-

pears as an additive constant in the lower right



cell of the table. Now, if the coefficient on fm

is significantly nonzero, the effect of being fe-

male on the wage differs, depending on marital

status, and vice versa. Are the interaction ef-

fects important–that is, does the joint distribu-

tion differ from the product of the marginals?

That is easily discerned, since if that is so b3
will be significantly nonzero.

Two extensions of this framework come to

mind. Sticking with two-way ANOVA (con-

sidering two factors’ effects), imagine that in-

stead of marital status we consider race =

{white, Black, Asian}. To run the model with-

out interactions, we would include two of these

dummies in the regression–say, Black and Asian;

the constant term would be the mean wage of

a white male (the excluded class). What if

we wanted to include interactions? Then we

would define f Black and f Asian, and include

those two regressors as well. The test for the



significance of interactions is now a joint test

that these two coefficients are jointly zero.

A second extension of the interaction concept

is far more important: what if we want to con-

sider a regular regression, on quantitative vari-

ables, but want to allow for different slopes

for different categories of observations? Then

we create interaction effects between the dum-

mies that define those categories and the mea-

sured variables. For instance,

lwage = b0+b1female+b2educ+b3 (female × educ)+u

Here, we are in essence estimating two sepa-

rate regressions in one: a regression for males,

with an intercept of b0 and a slope of b2, and

a regression for females, with an intercept of

(b0 + b1) and a slope of (b2 + b3) . Why would

we want to do this? We could clearly estimate



the two separate regressions, but if we did that,

we could not conduct any tests (e.g. do males

and females have the same intercept? The

same slope?). If we use interacted dummies,

we can run one regression, and test all of the

special cases of this model which are nested

within: that the slopes are the same, that

the intercepts are the same, and the “pooled”

case in which we need not distinguish between

males and females. Since each of these special

cases merely involves restrictions on this gen-

eral form, we can run this equation and then

just conduct the appropriate tests.

If we extended this logic to include race, as de-

fined above, as an additional factor, we would

include two of the race dummies (say, Black

and Asian) and interact each with educ. This

would be a model without interactions–where

the effects of gender and race are considered



to be independent–but it would allow us to es-

timate different regression lines for each com-

bination of gender and race, and test for the

importance of each factor. These interaction

methods are often used to test hypotheses about

the importance of a qualitative factor–for in-

stance, in a sample of companies from which

we are estimating their profitability, we may

want to distinguish between companies in dif-

ferent industries, or companies that underwent

a significant merger, or companies that were

formed within the last decade, and evaluate

whether their expenditures on R&D or adver-

tising have the same effects across those cat-

egories.

All of the necessary tests involving dummy vari-

ables and interacted dummy variables may be

easily specified and computed, since models

without interacted dummies (or without cer-

tain dummies in any form) are merely restricted



forms of more general models in which they

appear. Thus, the standard “subset F” test-

ing strategy that we have discussed for the

testing of joint hypotheses on the coefficient

vector may be readily applied in this context.

The text describes how a “Chow test” may be

formulated by running the general regression,

running a restricted form in which certain con-

straints are imposed, and performing a com-

putation using their sums of squared errors;

this computation is precisely that done with

Stata’s test command. The advantage of set-

ting up the problem for the test command is

that any number of tests (e.g. above, for the

importance of gender, or for the importance of

race) may be conducted after estimating a sin-

gle regression; it is not necessary to estimate

additional regressions to compute any possible

“subset F” test statistic, which is what the

“Chow test” is doing.


