
Wooldridge, Introductory Econometrics, 4th

ed.

Chapter 10: Basic regression analysis with

time series data

We now turn to the analysis of time series

data. One of the key assumptions underlying

our analysis of cross-sectional data will prove

to be untenable when we consider time series

data; thus, we separate out the issues of time

series modelling from that of cross sections.

How does time series data differ? First of all,

it has a natural ordering, that of calendar time

at some periodic frequency. Note that we are

not considering here a dataset in which some

of the variables are dated at a different point

in time: e.g. a survey measuring this year’s in-

come, and (as a separate variable) last year’s

income. In time series data sets, the observa-

tions are dated, and thus we need to respect



their order, particularly if the model we con-
sider has a dynamic specification (involving
variables from more than one point in time).
What is a time series? Merely a sequence of
observations on some phenomenon observed
at regular intervals. Those intervals may cor-
respond to the passage of calendar time (e.g.
annual, quarterly, monthly data) or they may
reflect an economic process that is irregular in
calendar time (such as business-daily data). In
either case, our observations may not be avail-
able for every point in time (for instance, there
are days when a given stock does not trade on
the exchange).

A second important difference between cross-
sectional and time series data: with the former,
we can reaonably assume that the sample is
drawn randomly from the appropriate popula-
tion, and could conceive of one or many alter-
nate samples constructed from the same popu-
lation. In the case of time series data, we con-
sider the sequence of events we have recorded



as a realization of the underlying process. We

only have one realization available, in the sense

that history played out a specific sequence of

events. In an alternate universe, Notre Dame

might have lost to BC this year. Randomness

plays a role, of course, just as it does in cross-

sectional data; we do not know what will tran-

spire until it happens, so that time series data

ex ante are random variables. We often speak

of a time series as a stochastic process, or

time series process, focusing on the concept

that there is some mechanism generating that

process, with a random component.

Types of time series regression models

Models used in a time series context can often

be grouped into those sharing common fea-

tures. By far the simplest is a static model,

such as

yt = β0 + β1x1,t + β2x2,t + ut (1)



We may note that this model is the equiva-

lent of the cross-sectional regression model,

with the i subscript in the cross section re-

placed by t in the time series context. Each

observation is modeled as depending only on

contemporaneous values of the explanatory

variables. This structure implies that all of the

interactions among the variables of the model

are assumed to take place immediately: or,

taking the frequency into account, within the

same time period. Thus, such a model might

be reasonable when applied to annual data,

where the length of the observation interval is

long enough to allow behavioral adjustments

to take place. If we applied the same model

to higher-frequency data, we might consider

that assumption inappropriate; we might con-

sider, for instance, that a tax cut would not be

fully reflected by higher retail sales in the same

month that it took effect. An example of such



a structure that appears in many textbooks is

the static Phillips curve:

πt = β0 + β1URt + ut (2)

where πt is this year’s inflation rate, and URt
is this year’s unemployment rate. Stating the

model in this form not only implies that the

level of unemployment is expected to affect the

rate of inflation (presumably with a negative

sign), but also that the entire effect of changes

in unemployment will be reflected in inflation

within the observation interval (e.g. one year).

In many contexts, we find a static model in-

adequate to reflect what we consider to be

the relationship between explanatory variables

and those variables we wish to explain. For

instance, economic theory surely predicts that

changes in interest rates (generated by mone-

tary policy) will have an effect on firms’ capital

investment spending. At lower interest rates,



firms will find more investment projects with a

positive expected net present value. But since

it takes some time to carry out these projects–

equipment must be ordered, delivered, and in-

stalled, or new factories must be built and

equipped–we would not expect that quarterly

investment spending would reflect the same

quarter’s (or even the previous quarter’s) in-

terest rates. Presumably interest rates affect

capital investment spending with a lag, and we

must take account of that phenomenon. If we

were to model capital investment with a static

model, we would be omitting relevant explana-

tory variables: the prior values of the causal

factors. These omissions would cause our es-

timates of the static model to be biased and

inconsistent. Thus, we must use some form of

distributed lag model to express the relation-

ship between current and past values of the

explanatory variables and the outcome. Dis-

tributed lag models may take a finite number



of lagged values into account (thus the Finite

Distributed Lag model, or FDL) or they may

use an infinite distributed lag: e.g. all past

values of the x variables. When an infinite DL

model is specified, some algebraic sleight-of-

hand must be used to create a finite set of

regressors.

A simple FDL model would be

ft = β0 + β1pet + β2pet−1 + β3pet−2 + ut (3)

in which we consider the fertility rate in the

population as a function of the personal ex-

emption, or child allowance, over this year and

the past two years. We would expect that the

effect of a greater personal exemption is posi-

tive, but realistically we would not expect the

effect to be (only) contemporaneous. Given

that there is at least a 9-month lag between

the decision and the recorded birth, we would

expect such an effect (if it exists) to be largely



concentrated in the β2 and β3 coefficients. In-

deed, we might consider whether additional

lags are warranted. In this model, β1 is the

impact effect, or impact multiplier of the

personal exemption, measuring the contempo-

raneous change. How do we calculate ∂f/∂pe?

That (total) derivative must be considered as

the effect of a one-time change in pe that

raises the exemption by one unit and leaves

it permanently higher. It may be computed

by evaluating the steady state of the model:

that with all time subscripts dropped. Then

it may be seen that the total effect, or long-

run multiplier, of a permanent change in pe

is (β1 + β2 + β3) . In this specification, we pre-

sume that there is an impact effect (allowing

for a nonzero value of β1) but we are impos-

ing the restriction that the entire effect will be

felt within the two year lag. This is testable,

of course, by allowing for additional lag terms

in the model, and testing for their joint sig-

nificance. However the analysis of individual



lag coefficients is often hampered–especially

at higher frequencies such as quarterly and

monthly data–by high autocorrelation in the

series. That is, the values of the series are

closely related to each other over time. If this

is the case, then many of the individual coeffi-

cients in a FDL regression model may not be

distinguishable from zero. This does not im-

ply, though, that the sum of those coefficients

(i.e. the long run multiplier) will be imprecisely

estimated. We may get a very precise value for

that effect, even if its components are highly

intercorrelated.

One additional concern that will apply in esti-

mating FDL models, especially when the num-

ber of observations is limited. Each lagged

value included in a model results in the loss

of one observation in the estimation sample.

Likewise, the use of a first difference (∆yt ≡
yt − yt−1) on either the left or right side of



a model results in the loss of one observa-

tion. If we have a long time series, we may

not be too concerned about this; but if we

were working with monthly data, and felt it

appropriate to consider 12 lags of the explana-

tory variables, we would lose the first year of

data to provide these starting values. Com-

puter programs such as Stata may be set up

to recognize the time series nature of the data

(in Stata, we use the tsset command to iden-

tify the date variable, which must contain the

calendar dates over which the data are mea-

sured), and construct lags and first differences

taking these constraints into account (for in-

stance, a lagged value of a variable will be set

to a missing value where it is not available).

In Stata, once a dataset has been established

as time series, we may use the operators L.,D.

and F. to refer to the lag, difference or lead of a

variable, respectively: so L.gdp is last period’s

gdp, D.gdp is the first difference, and F.gdp is



next year’s value. These operators can also

consider higher lags, so L2.gdp is the second

lag, and L(1/4).gdp refers to the first four lags,

using standard Stata “numlist” notation (help

numlist for details).

Finite sample properties of OLS

How must we modify the assumptions under-

lying OLS to deal with time series data? First

of all, we assume that there is a linear model

linking y with a set of explanatory variables,

{x1...xk}, with an additive error u,for a sample

of t = 1, ..., n. It is useful to consider the ex-

planatory variables as being arrayed in a matrix

X =

x1,1 · · · x1,k
x2,1 · · · x2,k

... · · · ...
xn,1 · · · xn,k

where, like a spreadsheet,

the rows are the observations (indexed by time)

and the columns are the variables (which may



actually be dated differently: e.g. x2 may ac-

tually be the lag of x1, etc.) To proceed with

the development of the finite sample properties

of OLS, we assume:

Proposition 1 For each t, E(ut|X) = 0, where

X is the matrix of explanatory variables.

This is a key assumption, and quite a strong

one: it states not only that the error is con-

temporaneously uncorrelated with each of the

explanatory variables, but also that the error is

assumed to be uncorrelated with elements of

X at every point in time. The weaker state-

ment of contemporaneous exogeneity,

E(ut|xt,1, xt,2, ..., xt,k) = 0 is analogous to the

assumption that we made in the cross-sectional

context. But this is a stronger assumption, for

it states that the elements of X, past, present,

and future, are independent of the errors: or

that the explanatory variables in X are strictly



exogenous. It is important to note that

this assumption, by itself, says nothing about

the correlations over time among the explana-

tory variables (or their correlations with each

other), nor about the possibility that succes-

sive elements of u may be correlated (in which

case we would say that u is autocorrelated).

The assumption only states that the distribu-

tions of u and X are independent.

What might cause this assumption to fail? Clearly,

omitted variables and/or measurement error

are likely causes of a correlation between the

regressors and errors. But in a time series con-

text there are other likely suspects. If we esti-

mate a static model, for instance, but the true

relationship is dynamic–in which lagged values

of some of the explanatory variables also have

direct effects on y−then we will have a correla-

tion between contemporaneous x and the error

term, since it will contain the effects of lagged



x, which is likely to be correlated with cur-

rent x. So this assumption of strict exogeneity

has strong implications for the correct speci-

fication of the model (in this case, we would

need to specify a FDL model). It also implies

that there cannot be correlation between cur-

rent values of the error process and future x

values:something that would be likely in a case

where some of the x variables are policy in-

struments. For instance, consider a model of

farmers’ income, dependent on (among other

factors) on government price supports for their

crop. If unprecedented shocks (such as a se-

ries of droughts), which are unpredictable and

random effects of weather on farmers’ income,

trigger an expansion of the government price

support program, then the errors today are cor-

related with future x values.

The last assumption we need is the standard

assumption that the columns of X are linearly



independent: that is, there are no exact linear

relations, or perfect collinearity, among the

regressors.

With these assumptions in hand, we can demon-

strate that the OLS estimators are unbiased,

both conditional on X and unconditionally. The

random assumption that allowed us to prove

unbiasedness in the cross-sectional context has

been replaced by the assumption of strict ex-

ogeneity in the time series context. We now

turn to the interval estimates. As previously,

we assume that the error variance, conditioned

on X, is homoskedastic: V ar(ut|X) = V ar(ut) =

σ2, ∀t. In a time series context, this assumption

states that the error variance is constant over

time, and in particular not influenced by the

X variables. In some cases, this may be quite

unrealistic. We now add an additional assump-

tion, particular to time series analysis: that

there is no serial correlation in the errors:



Cov(ut, us|X) = Cov(ut, us) = 0, ∀t 6= s. This

assumption states that the errors are not auto-

correlated, or correlated with one another, so

that there is no systematic pattern in the errors

over time. This may clearly be violated, if the

error in one period (for instance, the degree to

which the actual level of y falls short of the de-

sired level) is positively (or negatively) related

to the error in the previous period. Positive

autocorrelation can readily arise in a situation

where there is partial adjustment to a discrep-

ancy, whereas negative autocorrelation is much

more likely to reflect “overshooting,” in which

a positive error (for instance, an overly opti-

mistic forecast) is followed by a negative error

(a pessimistic forecast). This assumption has

nothing to do with the potential autocorrela-

tion within the X matrix; it only applies to

the error process. Why is this assumption only

relevant for time series? In cross sections, we

assume random sampling, whereby each obser-

vation is independent of every other. In time



series, the sequence of the observations makes

it likely that if independence is violated, it will

show up in successive observations’ errors.

With these additional assumptions, we may

state the Gauss-Markov theorem for OLS esti-

mators of a time series model (OLS estimators

are BLUE), implying that the variances of the

OLS estimators are given by:

V ar(bj|X) =
σ2[

SSTj
(
1−R2

j

)] (4)

where SSTj is the total sum of squares of the

jth explanatory variable, and R2
j is the R2 from

a regression of variable xj on the other ele-

ments of X. Likewise, the unknown parameter

σ2 may be replaced by its consistent estimate,

s2 = SSR
n−k−1, identical to that discussed previ-

ously.



As in our prior derivation, we will assume that

the errors are normally distributed: u ∼ N(0, σ2).

If the above assumptions hold, then the stan-

dard t−statistics and F−statistics we have ap-

plied in a cross-sectional context will also be

applicable in time series regression models.

Functional form, dummy variables, and in-

dex numbers

We find that a logarithmic transformation is

very commonly used in time series models, par-

ticularly with series that reflect stocks, flows,

or prices (rather than rates). Many models

are specified with the first difference of log(y),

implying that the dependent variable is the

growth rate of y. Dummy variables are also

very useful to test for structural change. We

may have a priori information that indicates

that unusual events were experienced in partic-

ular time periods: wars, strikes, or presidential



elections, or a market crash. In the context of

a dynamic model, we do not want to merely

exclude those observations, since that would

create episodes of missing data. Instead, we

can “dummy” the period of the event, which

then allows for an intercept shift (or, with in-

teractions, for a slope shift) during the un-

usual period. The tests for significance of the

dummy coefficients permit us to identify the

importance of the period, and justify its special

treatment. We may want to test that the rela-

tionship between inflation and unemployment

(the “Phillips curve”) is the same in Repub-

lican and Democratic presidential administra-

tions; this may readily be done with a dummy

for one party, added to the equation and inter-

acted to allow for a slope change between the

two parties’ equations. Dummy variables are

also used widely in financial research, to con-

duct event studies: models in which a par-

ticular event, such as the announcement of a



takeover bid, is hypothesized to trigger “ab-

normal” returns to the stock. In this context,

high-frequency (e.g. daily) data on stock re-

turns are analyzed, with a dummy set equal to

1 on and after the date of the takeover bid

announcement. A test for the significance of

the dummy coefficient allows us to analyze the

importance of this event. (These models are

explicitly discussed in EC327, Financial Econo-

metrics).

Creation of these dummies in Stata is made

easier by the tin() function (read: tee-in). If

the data set has been established as a time

series via tsset, you may refer to natural time

periods in generating new variables or spec-

ifying the estimation sample. For instance,

gen prefloat = (tin(1959q1,1971q3)) will gen-

erate a dummy for that pre-Smithsonian pe-

riod, and a model may be estimated over a

subset of the observations via regress ... if

tin(1970m1,1987m9).



In working with time series data, we are often

concerned with series measured as index num-

bers, such as the Consumer Price Index, GDP

Deflator, Index of Industrial Production, etc.

The price series are often needed to gener-

ate real values from nominal magnitudes. The

usual concerns must be applied in working with

these index number series, some of which have

been rebased (e.g. from 1982=100 to 1987=100)

and must be adjusted accordingly for a new

base period and value. Interesting implications

arise when we work with “real” magnitudes,

expressed in logs: for instance, labor supply

is usually modelled as depending on the real

wage,
(
w
p

)
. If we express these variables in logs,

the log of the real wage becomes logw− log p.

Regressing the log of hours worked on a single

variable, (logw − log p), is a restricted version

of a regression in which the two variables are

entered separately. In that regression, the co-

efficients will almost surely differ in their ab-

solute value. But economic theory states that



only the real wage should influence workers’

decisions; they should not react to changes in

its components (e.g. they should not be will-

ing to supply more hours of labor if offered a

higher nominal wage that only makes up for a

decrease in their purchasing power).

Trends and seasonality

Many economic time series are trending: grow-

ing over time. One of the reasons for very high

R2 values in many time series regressions is the

common effect of time on many of the vari-

ables considered. This brings a challenge to

the analysis of time series data, since when we

estimate a model in which we consider the ef-

fect of several causal factors, we must be care-

ful to account for the co-movements that may

merely reflect trending behavior. Many macro

series reflect upward trends; some, such as the

cost of RAM for personal computers, exhibit



strong downward trends. We can readily model

a linear trend by merely running a regression

of the series on t, in which the slope coefficient

is then ∂y/∂t. To create a time trend in Stata,

you can just generate t = n, where n is the

observation number. It does not matter where

a trend starts, or the units in which it is ex-

pressed; a trend is merely a series that changes

by a fixed amount per time period. A linear

trend may prove to be inadequate for many

economic series, which we might expect on a

theoretical basis to exhibit constant growth,

not constant increments. In this case, an ex-

ponential trend may readily be estimated (for

strictly positive y) by regressing log y on t. The

slope coefficient is then a direct estimate of

the percentage growth rate per period. We

could also use a polynomial model, such as a

quadratic time trend, regressing the level of

y on t and t2.



Nothing about trending economic variables vi-

olates our basic assumptions for the estima-

tion of OLS regression models with time se-

ries data. However, it is important to consider

whether significant trends exist in the series;

if we ignore a common trend, we may be esti-

mating a spurious regression, in which both y

and the X variables appear to be correlated be-

cause of the influence on both of an omitted

factor, the passage of time. We can readily

guard against this by including a time trend

(linear or quadratic) in the regression; if it is

needed, it will appear to be a significant de-

terminant of y. In some cases, inclusion of a

time trend can actually highlight a meaning-

ful relationship between y and one or more x

variables: since their coefficients are now es-

timates of their co-movement with y, ceteris

paribus: that is, net of the trend in y.

We may link the concept of a regression in-

clusive of trend to the common practice of



analyzing detrended data. Rather than re-
gressing y on X and t, we could remove the
trend from y and each of the variables in X.

How? Regress each variable on t, and save
the residuals (if desired, adding back the orig-
inal mean of the series). This is then the
detrended y, call it y∗, and the detrended ex-
planatory variables X∗ (not including a trend
term). If we now estimate the regression of y∗

on X∗, we will find that the slope coefficients’
point and interval estimates are exactly equal
to those from the original regression of y on
X and t. Thus, it does not matter whether we
first detrend the series, and run the regression,
or estimate the regression with trend included.
Those are equvalent strategies, and since the
latter is less burdensome, it may be preferred
by the innately lazy researcher.

Another issue that may often arise in time se-
ries data of quarterly, monthly or higher fre-
quency is seasonality. Some economic vari-
ables are provided in seasonally adjusted form.



In databanks and statistical publications, the

acronym SAAR (seasonally adjusted at annual

rate) is often found. Other economic series are

provided in their raw form, often labelled NSA,

or not seasonally adjusted. Seasonal factors

play an important role in many series. Natu-

rally, they reflect the seasonal patterns in many

commodities’ measures: agricultural prices dif-

fer between harvest periods and out-of-season

periods, fuel prices differ due to winter demand

for oil and natural gas, or summer demand

for gasoline. But there are seasonal factors

in many series we might consider with a more

subtle interpretation. Retail sales, naturally,

are very high in the holiday period: but so is

the demand for cash, since shoppers and gift-

givers will often need more cash at that time.

Payrolls in the construction industry will ex-

hibit seasonal patterns, as construction falls

off in cold climates, but may be stimulated by

a mild winter. Many financial series will re-

flect the adjustments made by financial firms



to “dress up” quarter-end balance sheets and

improve apparent performance.

If all of the data series we are using in a model

have been seasonally adjusted by their produc-

ers, we may not be concerned about seasonal-

ity. But often we will want to use some NSA

series, or be worried about the potential for

seasonal effects. In this case, just as we dealt

with trending series by including a time trend,

we should incorporate seasonality into the re-

gression model by including a set of seasonal

dummies. For quarterly data, we will need 3

dummies; for monthly data, 11 dummies; and

so on. If we are using business-daily data such

as financial time series, we may want to in-

clude “day-of-week” effects, with dummies for

four of the five business days.

How would you use quarterly dummies in Stata?

First of all, you must know what the time vari-

able in the data set is: give the command



tsset to find out. If it is a quarterly variable,
the tsset range will report dates with embed-
ded “q”s. Then you may create one quarterly
dummy as gen q1=(quarter(dofq(qtr))==1) which
will take on 1 in the first quarter, and 0 oth-
erwise. To consider whether series income ex-
hibits seasonality, regress income L(1/3).q1 and
examine the F−statistic. You could, of course,
include any three of the four quarter dummies;
L(0/2) would include dummies for quarters 1,
2 and 3, and yield the same F−statistic. Note
that inclusion of these three dummies will re-
quire the loss of at least two observations at
the beginning of the sample. This form of
seasonal adjustment will consider the effect
of each season to be linear; if we wanted to
consider multiplicative seasonality, e.g. sales
are always 10% higher in the fourth quarter,
that could be achieved by regressing log y on
the seasonal dummies. A trend could be in-
cluded in either form of the regression to cap-
ture trending behavior over and above sea-
sonality; in the latter regression, of course,



it would represent an exponential (constant

growth) trend.

Just as with a trend, we may either deseason-

alize each series (by regressing it on seasonal

dummies, saving the residuals, and adding the

mean of the original series) and regress sea-

sonally adjusted series on each other; or we

may include a set of seasonal dummies (leav-

ing one out) in a regression of y on X, and test

for the joint significance of the seasonal dum-

mies. The coefficients on the X variables will

be identical, in both point and interval form,

using either strategy.


