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Chapter 9: More on specification and data

problems

Functional form misspecification

We may have a model that is correctly speci-

fied, in terms of including the appropriate ex-

planatory variables, yet commit functional form

misspecification–in which the model does not

properly account for the relationship between

dependent and observed explanatory variables.

We have considered this sort of problem when

discussing polynomial models; omitting a squared

term, for instance, and constraining ∂y/∂x to

be constant (rather than linear in x) would be



a functional form misspecification. We may

also encounter difficulties of this sort with re-

spect to interactions among the regressors. If

omitted, the effects of those regressors will be

estimated as constant, rather than varying as

they would in the case of interacted variables.

In the context of models with more than one

categorical variable, assuming that their effects

can be treated as independent (thus omitting

interaction terms) would yield the same diffi-

culty.

We may, of course, use the tools already de-

veloped to deal with these problems, in the

sense that if we first estimate a general model

that allows for powers, interaction terms, etc.

and then “test down” with joint F tests, we

can be confident that the more specific model

we develop will not have imposed inappropri-

ate restrictions along the way. But how can



we consider the possibility that there are miss-
ing elements even in the context of our general
model?

One quite useful approach to a general test for
functional form misspecification is Ramsey’s
RESET (regression specification error test).
The idea behind RESET is quite simple; if we
have properly specified the model, no nonlinear
functions of the independent variables should
be significant when added to our estimated
equation. Since the fitted, or predicted values
(ŷ) of the estimated model are linear in the in-
dependent variables, we may consider powers
of the predicted values as additional regres-
sors. Clearly the ŷ values themselves cannot
be added to the regression, since they are by
construction linear combinations of the x vari-
ables. But their squares, cubes,... are not.
The RESET formulation reestimates the orig-
inal equation, augmented by powers of ŷ (usu-
ally squares, cubes, and fourth powers are suffi-
cient) and conducts an F-test for the joint null



hypothesis that those variables have no sig-

nificant explanatory power. This test is easy

to implement, but many computer programs

have it already programmed; for instance, in

Stata one may just specify estat ovtest (omit-

ted variable test) after any regression, and the

Ramsey RESET will be produced. However,

as Wooldridge cautions, RESET should not be

considered a general test for omission of rele-

vant variables; it is a test for misspecification

of the relationship between y and the x values

in the model, and nothing more.

Tests against nonnested alternatives

The standard joint testing framework is not

helpful in the context of “competing models,”

or nonnested alternatives. These alternatives

can also arise in the context of functional form:

for instance,



y = β0 + β1x1 + β2x2 + u (1)

y = β0 + β1 logx1 + β2 logx2 + u

are nonnested models. The mechanical al-

ternative, in which we construct an artificial

model that contains each model as a special

case, is often not very attractive (and some-

time will not even be feasible). An alterna-

tive approach is that of Davidson and MacK-

innon. Using the same logic applied in devel-

oping Ramsey’s RESET, we can estimate each

of the models in (1), generate their predicted

values, and include them in the other equation.

Under the null hypothesis that the first form of

the model is correctly specified, a linear com-

bination of the logs of the x variables should

have no power to improve it, and that coef-

ficient should be insignificant. Likewise, one

can reestimate the second model, including the

predicted values from the first model. This



testing strategy–often termed the Davidson-

MacKinnon “J test”–may indicate that one

of the models is robust against the other.

There are no guarantees, though, in that ap-

plying the J test to these two equations may

generate zero, one, or two rejections. If nei-

ther hypothesis is rejected, then the data are

not helpful in ranking the models. If both are

rejected, we are given an indication that nei-

ther model is adequate, and that a continued

specification search should be conducted. If

one rejection is received, then the J test is

definitive in indicating that one of the models

dominates (or subsumes) the other, and not

vice versa. However, this does not imply that

the preferred model is well specified; again, this

test is against a very specific alternative, and

does not deliver a “clean bill of health” for the

preferred model should one emerge.



Proxy variables

So far, we have discussed issues of misspec-

ification resulting from improper handling of

the x variables. In many economic models, we

are forced to employ “proxy variables”: ap-

proximate measures of an unobservable phe-

nomenon. For instance, admissions officers

use SAT scores and high school GPAs as prox-

ies for applicants’ ability and intelligence. No

one argues that standardized tests or grade

point averages are actually measuring aptitude,

or intelligence; but there are reasons to believe

that the observable variable is well correlated

with the unobservable, or latent, variable. To

what extent will a model estimated using such

proxies for the variables in the underlying re-

lationship be successful, in terms of delivering

consistent estimates of its parameters? First,

of course, it must be established that there

is a correlation between the observable vari-

able and the latent variable. If we consider the



latent variable as having a linear relation to

a measurable proxy variable, the error in that

relation must not be correlated with other re-

gressors. When we estimate the relationship

including the proxy variable, it should be ap-

parent that the measurement error from the

latent variable equation ends up in the error

term, as an additional source of uncertainty.

This is an incentive to avoid proxy variables

where one can, since they will inexorably inflate

the error variance in the estimated regression.

But usually they are employed out of necessity,

in models for which we have no ability to mea-

sure the latent variable. If there are several

potential proxy measures, they might each be

tested, to attempt to ascertain whether bias is

being introduced to the relationship.

In some cross-sectional relationships, we have

the opportunity to use a lagged value of the

dependent variable as a proxy variable. For in-

stance, if we are trying to explain cities’ crime



rates, we might consider that there are likely
to be similarities—irregardless of the effective-
ness of anti-crime strategies—between current
crime rates and last year’s values. Thus, a
prior value of the dependent variable, under-
standably independent of this year’s value, may
be a useful proxy for a number of factors that
cannot otherwise be quantified. This approach
might often be used to deal with factors such
as “business climate,” in which some states
or municipalities are viewed as more welcom-
ing to business; there may be many aspects
to this perception, some of them more readily
quantifiable (such as tax rates), some of them
not so (such as local officials’ willingness to ne-
gotiate infrastructure improvements, or assist
in funding for a new facility). But in the ab-
sence of radical changes in localities’ stance in
this regard, the prior year’s (or decade’s) busi-
ness investment in the locality may be a good
proxy for those factors, perceived much more
clearly by the business decisionmakers than by
the econometrician.



Measurement error

We often must deal with the issue of mea-

surement error: that the variable that theory

tells us belongs in the relationship cannot be

precisely measured in the available data. For

instance, the exact marginal tax rate that an

individual faces will depend on many factors,

only some of which we might be able to ob-

serve: even if we knew the individual’s income,

number of dependents, and homeowner sta-

tus, we could only approximate the effect of

a change in tax law on his or her tax liabil-

ity. We are faced, therefore, with using an

approximate measure, including some error of

measurement, whenever we might attempt to

formulate and implement such a model. This is

conceptually similar to the proxy variable prob-

lem we have already discussed, but in this case

it is not a latent variable problem. There is an

observable magnitude, but we do not necessar-

ily observe it. For instance, reported income is



an imperfect measure of actual income, while

IQ score is only a proxy for ability. Why is

measurement error of concern? Because the

behavior we’re trying to model–be it of indi-

viduals, firms, or nations–presumably is driven

by the actual measures, not our mismeasured

approximations of those factors. To the extent

that we fail to capture the actual measure, we

may misinterpret the behavioral response.

If measurement error is observed in the de-

pendent variable–for instance, if the true rela-

tionship explains y∗, but we only observe y =

y∗ + ε, where ε is a meanzero error process,

then ε becomes a component of the regres-

sion error term: yet another reason why the

relationship does not fit perfectly. We assume

that ε is not systematic, in particular, that it is

not correlated with the independent variables

X. As long as that is the case, then this form

of measurement error does no real harm; it



merely weakens the model, without introduc-

ing bias in either point or interval estimates. If

the magnitude of the measurement error in y is

correlated with one or more of the x variables,

then we will have a problem of bias.

Measurement error in an explanatory variable,

on the other hand, is a far more serious prob-

lem. Say that the true model is

y = β0 + β1x
∗
1 + u (2)

but that x∗1 is not observed; instead, we ob-

serve x1 = x∗1 + ε1. We can assume that

E(ε1) = 0 with generality. But what should

be assumed about the relationship between ε1
and x∗1? First, let us assume that ε1 is uncor-

related with the observed measure x1 (that is,

larger values of x1 do not give rise to system-

atically larger (or smaller) errors of measure-

ment). This can be written as

Cov( ε1, x1) = 0. But if this is the case, it



must be true that Cov( ε1, x
∗
1) 6= 0 : that is,

the error of measurement must be correlated

with the actual explanatory variable x∗1, so that

we can write the estimated equation (in which

x∗1 is replaced with the observable x1) as

y = β0 + β1x1 + (u− β1ε1) (3)

Since both u and ε1 have zero mean and are

uncorrelated (by assumption) with x1, the pres-

ence of measurement error merely inflates the

error term: that is, V ar (u− β1ε1) = σ2
u+β2

1σ
2
ε1
,

given that we have assumed that u and ε1 are

uncorrelated with each other. Thus, measure-

ment error in x∗1 does not negatively affect the

regression of y on x1; it merely inflates the

error variance, like measurement error in the

dependent variable.

However, this is not the case that we usu-

ally consider under the heading of errors-in-

variables. It is perhaps more reasonable to



assume that the measurement error is uncor-

related with the true explanatory variable:

Cov( ε1, x
∗
1) = 0. If this is so, then

Cov( ε1, x1) = Cov(ε1,
(
x∗1 + ε1

)
) 6= 0 by con-

struction, and the regression (3) will have a

correlation between its explanatory variable x1
and the composite error term. The covariance

of (x1, u− β1ε1) = −β1Cov(ε1, x1) =

−β1σ
2
ε1
6= 0, causing the OLS regression of y on

x1 to be biased and inconsistent. In this simple

case of a single explanatory variable measured

with error, we can determine the nature of the

bias:

plim(b1) = β1 +
Cov (x1, u− β1ε1)

V ar(x1)
(4)

= β1

 σ2
x1

σ2
x1

+ σ2
ε1


demonstrating that the OLS point estimate

will be attenuated—biased toward zero—since

the bracketed expression must be a fraction.



Clearly, in the absence of measurement error,
σ2
ε1
→ 0, and the OLS coefficient becomes un-

biased and consistent. As σ2
ε1

increases rela-
tive to the variance in the (correctly measured)
explanatory variable, the OLS coefficient be-
comes more and more unreliable, shrinking to-
ward zero.

What can we conclude in a multiple regression
equation, in which perhaps one of the explana-
tory variables is subject to measurement error?
If the measurement error is uncorrelated to the
true (correctly measured) explanatory variable,
then the result we have here applies: the OLS
coefficients will be biased and inconsistent for
all of the explanatory variables (not merely the
variable measured with error), but we can no
longer predict the direction of bias in general
terms. Realistically, more than one explana-
tory variable may be subject to measurement
error (e.g. both reported income and wealth
may be erroneous).



We might be discouraged by these findings,

but fortunately there are solutions to these

problems. The models in question, in which

we suspect the presence of serious errors of

measurement, may be estimated by techniques

other than OLS regression. We will discuss

those instrumental variable techniques, which

may also be used to deal with problems of si-

multaneity, or two-way causality, in Chapter

15.


